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An Odd Solution to the Functional Equation P(F—_;—l-)= exp(P(x))

Maric R. Leeper (Amherst, Massachusetts, U.5.A.)

1. Introduction

The purpose of this paper is to study the system of functional equations,

P ( : ‘) — exp(P () (M
P(x)+ P(—x)=0, (2)

where P is a real function defined on the open interval (—1, 1). The following theorem
will be proved:

THEOREM. The system of functional equations (1) and (2) has a unique continuous
solution. This solution is strictly increasing and has a zero derivative at every dvadic
rational in (—1, 1).

The system of functional equations (1) and (2) arises naturally in the following
manner: Consider a homeomorphism @ from the square (—1, 1})x(—1, 1) to the
plane X » ¥ which treats each co-ordinate in the same fashion and preserves symmetry
about the ¥-axis. Such a ¢ must have the form

®((x, y)) = (P(x), P (»)):

where P is a homeomorphism from the interval (=1, 1) to the real line; the symmetry
condition implies that

{F{[:— Xy .}J)] = (P(_ x}v P(Y}} = {_ P(x}, P(J’}}a

whence P must be an odd function, i.e., satisfy (2). If one now asks for the function ¢
which maps the line segment

1
_v=(x-; )._. -l<x<l,

ontotheexponential curve y = ¢*, — o0 < x < oo, then @ must take the point (0, ((x+ 1)2))
on the line segment to the point ( P (x), P ((x+1)/2)) on the exponential curve, whence
P must satisfy (1}.
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II. Proof of Theorem
The proof of the theorem stated above will be divided into a sequence of lemmas.
LEMMA 1. If P is a function satisfying (1) and (2) then P also satisfies
POIP(1—t)=1, (3)

P(;)=exp|:—”?l:f]}, for 0<t<l. (4)

Proof. Let 0<t<1. Then, using (1) and (2),

1 = exp (0) = exp(P (2t — 1))-exp(— P (2t — 1))
= exp(P (2t — 1)}-exp(P (1 — 21))

e (EF - _zllt ‘..),p (il%}“)

=P(t)-P(1—1).

This proves (3). Now, using (1), (2), and (3),

% (z) 3 P(ll_ r_) . P(u —lr) j—_l) i exp(Fltt —0) exp(ilwm} i (;Tl))
2 2

The identities (1)~(4) determine P recursively on the dyadic rationals in (—1, 1)
as follows:

(i) From (2) we have that P (0)=0 and from (1) that P (1/2)=exp(0)=1.
Thus P is determined on D, ={0, 1/2}.

(ii) Now suppose that the values of P have been determined on the set

n
D, = {E’ |m=0,1,2,...,2" - 1}-

Then (4) determines the values of P on

m
-4u+'| = {E":_l | m :ﬂ, '|1 2, raag 2“ T 1}

and (1) determines F on

m+ 2"
gm={-2Lim=u,1,2,...,z"—l}.

w1



Yol. 10, 1974 ' An 0Odd Solution 107

Thus P is determined on D, =4 ., UB, . But |_J;_; D, is just the set of dyadic
rationals in [0, 1). Thus P is defined on the dyadic rationals in [0, 1) and, by (2), on D,
the set of dyadic rationals in (-1, 1).

Let the binary expansion of a dyadic rational de(0, 1) be given by

£x
d= oF = Eafz . 8 (3)

where &,=0 or 1, k=1,2,...,n—1, and g,=1. Then P (d) may be computed by
means of the following algorithm:

Let ¢* and ¢~ denote, respectively, the exponential and negative exponential
function, i.e. e™ (x)=exp(x) and ¢~ (x)=exp(—x); and let any finite string of *’s
and e”'s denote the value of the corresponding composite function at 0, so that,
for exemple

eteTe"eTe” = exp(exp (exp (— exp (exp (— 0))))).

Then, since P (0)=0, we find by (1) and (4)

P()=imet
P(0l)=e"e, P(ll)=e'e"
P(001)=e"e*e”,P(Oll)=e"e"e", P(101)=e"e e, P(.111)=¢"e"e".

In each of these evaluations, the first function in a composition is arbitrary since
e* (0)=e (0). The choice of the first function in the composition is made here for
consistency with the following algorithm. In general for a binary expansion, d, of
length n, as given by (5), P (d) is determined as follows: In the binary expansion of d,

{a) Replace g, by ¢¥ il g, =1 and by e~ if &, =0

(b) Replace £;,, by e” if £,,,=¢, and by ™ if g, #5,

(i.e. replace each binary digit after the first by e* or e~ according as it does or does not
match the digit to its left)

To prove that this algorithm does indeed give the correct values for P (), we first
note that it works for all binary expansions of length 1, i.e. P (.1)=1. Now suppose it
works for all binary expansions of length at most #, i.e. for all elements of D, in {ii)
above. Let deD_, =AW B . If ded_ ;. then d=m{2""! for some (m{2")sD,.
In this case the binary expansion of d is given by a 0 followed by the digits of the
expansion of m/2". Applying (a) and (b) to the binary expansion of  yields a string of
length n+ 1 beginning with e~ followed by an e~ or e™, according as the first element
of the string for m/2" is e* or ¢~ followed by the remaining (n—1) symbols of the
string for m/2". By (4), this is precisely the string for exp(—1/P (m/2")). For example,
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from
P(.1111011) =etefetete e e*,

we get

P(O1111011)=¢"e e"eTeTe e e
—exp(—1feTeTeteTe e e® ) =exp(— 1/P(.1111011)).

Thus the algorithm yields the correct value of P (d) for de A, ;.

MNext, if de B, then d=m/2""! 4 1/2 for some m/2"e D, and the binary expansion
of d is given by a 1 followed by the digits of the expansion of m/2". Applying (a) and (b)
to the expansion of d yields a string of length n+ 1 beginning with an ¢ followed by the
string for m/2"; e.g. from

P(01011) =e e e e &
we get
P(.101011) = e*e e e e et =exp(e"e e e ") = exp(P(.01011))

and by(1), P (1/2+m/2"")=exp(P (m/2")). Thus the algorithm also yields the correct
value of P (d) for deB, ;. Thus the algorithm determines the values of P for any
dyadic rational in [0, 1). Whence, by (2), it determines the value of P for any dyadic
rational in (=1, 1).

LEMMA 2. Suppose &€,... &, gives rise by the algorithm to ejes... e, where
e;=eT ore”, i=1,..., n. Then the number of e s in the siving e,e; ... e, J<n, is even or
odd according as &;=1 or 0.

Proof. Use induction on the length of the string.

LEMMA 3. Let aand b be non-negative and not both zero. Then e, o¢30--2¢;2e” ()
is less than or greater than e =eyo---ce;oe” (b) according as the string eje;...e et has
an odd or even number of e7's, e;=eT ore”, i=1,2, .}

Proof. First note that if @ and b are non-negative and not both zero then e” (a)>
e (b) and that, if 0<e<d, then e*(c)<e’(d) and e (c)=e" (d). Thus, if we
operate on the inequality e (a)=e™ (b) with composite function ¢, ce;=---ce;, the
sense of the inequality changes whenever an ¢~ is performed on both sides and remains
unchanged otherwise.

LEMMA 4. The composite function e cey=---vce;ce” is strictly increasing or
decreasing on [0, 1) according as the string e,e,...e;e” has an even or an odd number
aof e”’'s.
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LEMMA 5. If Pis a function satisfying (1) and (2) then P is uniquely determined and
strictly increasing on the dyadic rationals in (=1, 1).

Proof. Consider o, and d,, two dyadic rationals in (0, 1) with d, <d,. One of two
cases is true of their binary expansions:

(i) For some m, the two expansions agree for the first m places to the right of the
binary point; the m+ 1™ place of the expansion of , has a 0 and that of d, a I, e.z.
dy=.1101101, d,=.110111, m=5.

(ii) m is the length of &, and is less than the length of 4, ; and the first m places of d,
to the right of the binary point agree with d,, e.g. d,=.1011, 4,=.101101, m=4.

Now let d, =.g2;...5, d;=¢jg; ...}, so that, in the notation of the algorithm,
P(d)=ee;...e, and P (d;)=¢}e;...€].

If (i) is true then e;=¢}, i=1, 2, ..., m, and, by Lemma 2, the string ¢,¢5 ... €,€m4 1
has an odd number e~ 's while the string eje}...elel,+, has an even number. If
£n=1£,=0 then e,,,=¢", ey ., =€~ and, by Lemma 3, P (d,)< P(d;); similarly, if
En=E,=1, then e, 4, =€, €,,;=¢" and, again by Lemma 3, P(d,)<P(d;).

If (ii) is true, then m=k<j, e;=¢), i=1, 2,..., k, and g =1, so that the string
€€ ...e; has an even number of e ~’s. But since O <e}, e}, ;... ¢}, by Lemma 4, we have

P(d,)=ee;...e, =€ oe;5--- 0, (0)

< eyoeze-oe (e ... 8]) = ere;...e; = P(dy),

which completes the proof.

Lemma 5 makes possible a simple proof of continuity on the dyads in {—1, 1) of
any solution to (1) and (2). Since any such solution is strictly monotonic on the dyads
we need merely show that for any given dyad, d in (0,1) there is an increasing and a
decreasing sequence of dyads in (0, 1), both converging to &, whose images under P
convergeto P (d). Letd=.g,£,¢5...6_, 1 and, by the algorithm, P (d)=.¢,e¢;...6y_, €.

Let
st if = e’
] et ] i e, = .

and let P, denote the composite function e,«¢; ce5=-+-0g,. Consider the sequence

d, =.8;8:8;...8, 4,01, P(d,)=eeze;...60_,58 ,

dy = 8,838y ... 8,011, P(d,) =eese;...0,_ 5 e",

dy = .6\ 8383 ... 50111, P(d;)=eje;e;5...00_ 158 '€,
dy = .8y8383... 501111, P(dy)=ee;ey...0, 186 e e'e".

Clearly {d,} is an increasing sequence whose limit is &. Moreover, since &,(x)=¢,( —x),
it follows that P (d,)=Py(— ™), P (d3) =Py (—e~¢* ), P(dy) =P, (—e~e* "), P (d,) =
=P, (—e eete’),.... Butthesequence {—e™, —e e*, —e e'e™,...} convergesto 0
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and P, is a continuous function. Hence the sequence of images {P (d,)} converges to
P (O)=ee;...e,=P (d).
Similarly, consider the sequence

o
Dy = 848285 ... 8411, P(D;)=e e3¢5 ... 8,18,
D; = 81838y ... 8,101, P(D,)=¢e,e;5...6, 168 € ,
Dy = .gyge5 .., 1001, P(D;)=e,eze5...e,_,e, ete,

Dy = .61885...8,_,10001, P(D,)=¢e:85...00_185¢ etete,
Ds = 64838y ...8,_,100001, P(D;)=e e.e;...6,_e,6 e etete .

Clearly {D,} is a decreasing sequence of dyvads whose limit is 4. An argument similar
to the one above shows that the sequence of images { P (D,)} is a sequence converging
to P (d). Thus any solution to (1) and (2) is continuous on the dyadsin (0, 1). Applying
(1) and a similar argument to demonstrate continuity at zero, we get that any such
solution is continuous on the dyads in (—1, 1). Thus by continuity on a dense subset
of (=1, 1) we get that our unique solution of (1) and (2) on the dyads in (-1, 1) can
be extended to a unique solution on all of (—1, 1). Thus we have proved

LEMMA 6. The system of functional equations (1) and (2) possesses a unigue,
strictly increasing, continuous solution on the interval (—1, 1).

LEMMA 7. The solution to (1) and (2) has a zero derivative at zero,
Proofl) Let {x,} be a strictly decreasing sequence converging to zero. For each x,
there exists a positive integer m(n) such that

@0 <z, < G
and thus

P((H)™") < P(x,) < P((2)"")

with lim,_, _m(n)=c0. Thus

P'(0 +) = lim (P{x:)_: g;{f']) Y— (P (x,,)) i ( ?_E){ 3[1,:})

] o Xy =

amu)+1
A
e P(1 — ()™
mimle* s
since P(1—(1)"")=e*e*...e* grows much faster then 2"™*! Since P is an odd
function, the same argument shows that P'(0—)=0, whence P’ (0)=0.

1y This argument is due to Prof, E. Killam,
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LEMMA 8. If xe€[0,1) is such that P'(x)=0 then P'((x+1)/2)=P'(x/2)=0.
Proof. This follows at once by differentiating (1) and (4).

LEMMA. 9 If d is any dyad in (—1, 1), then P’ (d)=0.

Proof. The proof follows the lines of the proof that a solution to (1) and (2) was
defined on the dyadic rationals but using Lemma 8 instead of (1) and (4).

This completes the proof of the Theorem.

We see then that P is a continuous monotonic bijection from the interval (—1, 1)
to the reals. We may compute by (1) that P (7/8) is approximately 15.1 and P (15/16)
is about 3.8 10° Thus, by applying first (3) and then (2), it follows that in the
interval (—1/16, 1/16) the function has absolute value less than 2.7 x 10~ 7, Since the
function is continuous and strictly monotone we might say that the function ‘almost
levels off” in an interval about zero. By (1) we also see that the function also ‘almost
levels off*in an interval about 12 and that the length of the interval in which it does so is
a little less than half the length of the interval about zero. For example, we may easily
compute that for xe(15/32, 17/32), P (x)e(exp(—2.7x1077), exp(2.7x 10 7)).
Thus, as the graph shows, the function is fairly ‘level” at 1/2. Using (1} and (4) we
further see that P, *almost levels off” at each dyadic rational m{2" and that the width of
the interval of leveling is, very approximately, proportional to 1/2".

It has already been shown that P’ (0)=0. The following argument will yield not
only an alternate proof of this fact, but will also show just how “flat’ P actually is at zero.

From the estimate that P (1/16)<2.7 x 1077 it follows that for any ue[1/64, 1/32]:

P(2u) <1075 < 107*% < u*, (6)

whence 1/P (2w)= 10, for we(0, 1/32]. Since 4v<e” for v = 10, it follows that for
we(0, 1/32],
e™ VP2 < p(2y)/4. (7)

Now let n=5 and assume, as in (6), that P (2x)<x* for xe[1/2°*!, 1/2"]. It follows by

(7) that
P(x) = e/ < PQx)4 < x4 = (x/2)°

and hence P (x)<x? for any xe[1/2"*2, 1/2"*!]. This induction shows that
P (2x)<x*for xe | s[1/2"*Y, 1/2"]=(0, 1/32]. Whence, for any xe[ —1/32, 1/32],
0<|P (x)| =P (Jx]) =&~ FR1=D,

But e "/ is an increasing function so e VP21 g e~ 1% Thug we have shown

0<|P(x)<e ™, for 0<x<1/32, (8)

=1fx?

i.e. that P (x) is even *flatter’ at zero than is e a function notorious for being *flat’
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at zero! Certainly

0< P'(0)=lim P(x)/x < lime™"fx =0, whenceagain P'(0)=0.

x=+0 a1
TII. Related Topics

The technique of this paper has been to begin with (1) and (2) and to first show
that if P is restricted to [0, 1), then (2) is equivalent to (4). In this case the system (1)
and (4) is of the form

f(x2) =go(F(x)
f(’“—;r—l)ql{f(x)} } ©)

where g4:(0, w0)— (0, 1) and g,:(0, )= (1, o) are strictly increasing homeo-
morphisms having unique fixed points at 0 and oo, respectively. In the case we
have studied gg(x)=e""* and g, (x)=¢"

The system of functional equations (9), with g, (x)=x/(1+x) and g, (x)=1+=x,
has been previously considered by G. DeRham [1] who showed that for this pair of
functions (9) has a unique, strictly monotone, continuous solution, having infinite
derivative on each dyadic rational.

The fact that the same system of equations (9) arises in different contexts and
has such interesting yet different solutions for different choices of g, and g,, naturally
leads one to study the system itself. As regards this project, we can report the following
resulis:

Suppose fis a solution of the system (9) and that §(0) exists. Let

L = lim (((1/2"" /2" )/(1/27/(1/27)) (10)

u= oo

If L <1, then f'(0)=0; if L= 1, then f '(0)= + oo ; and if L= 1, this test is inconclusive.
The quotient in (10) is equal to

2go (£(1/27)/ £ (1/27)
and, since g, is a homeomorphism whose only fixed point is zero, we get
lim ... f(1/2")=0. Thus, if it exists,
lim2g, (v)fv=L.

o0
For our case go(x)=e" '/~ lim,_,2g,(v)/v=0, and so P has zero derivative at zero.
In DeRham’s case gqo(x)=x/(1+x), lim ,.,2 g,(v)/v=2 and so his function has an
infinite derivative at zero,
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If a solution to (10) has infinite or zero derivative at zero and if g and g, have
finite positive derivatives, then

I (x12) = 286 (f(x)) £ (x)
(= + 1)/2) =221 (F(x)) /" (%)
and the zero or infinite derivative of fat zero can be extended to each dyadic rational

in the domain by arguments similar to those applied to P.
We have also considered the pair of functions g, and g, defined by

S R T |
—o 4 e+ dx
go(x) = i .
2x
scx+,f:c_2x1+4
g1 (x)=———

where &= 0. Arguments similar to those used for the function P show that this system
possesses a unique, strictly increasing, continuous solution. If 22 the solution has
derivative zero on the dyadic rationals. If @<2 the solution has infinite derivative
on the dyadic rationals. In the indeterminate case, i.e., «=2. the solution is
tan xm/2, an analytic function!

In addition to the general study of (9) there are a number of specific open questions
about P itself including the following:

(1) What values does P'(x) take for x not a dyadic rational?

(2) Is the function P as “fat’ at each dyadic rational as ™ %% is at zero?

I am grateful to professors B. Schweizer and 5. Holland for their guidance in
the preparation of this paper.
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