CIS-130

SURVEY OF OPERATING SYSTEMS

LAB EXERCISE #4: FILE LIST OPTIONS, PERMISSIONS,
WILDCARD CHARACTERS AND CONCATENATION

DIRECTORIES AND FILES REQUIRED:

Directory users/acct/dgbo

Directory users/acct/pubo

/users/acct/pubo/ Files: test.file, unix.sum.x (without read permission for “others”)

File users/acct/dgbo.

Directory textfiles

/CIS130 Files: dir.list, firstfile, newfile.txt, unix.sum, vi.cmd

EXERCISE OBJECTIVES:
1.
Use the “ls” command and its options to display lists of files contained in system directories.

2.
Understand file ownership file permissions codes in a directory listing.

3.
Modify file permissions to allow or restrict access to the file

4.
Use wildcard characters to construct file names to perform tasks on a set of files.

5.
Use the “cat” command to concatenate several files into one file.

NOTES

Save all output into individual files. These will be concatenated at the end of the lab for printing. Each output for Part 1 of lab number 4 (before the Tasks) is to be stored in a file called Lab4Part1.n where “n” is a sequence number. Each output for Part 2 of the lab (in the Tasks) is to be stored in a file called Lab4Part2.n.

PRELUDE:

Ask questions if you get stuck. Help each other.

GET STARTED:

Logon
TERM=vt100

$ cd CIS130
PART 1

USING THE UNIX “ls” COMMAND AND ITS OPTIONS:

The ls command was introduced in earlier exercises, but the full use of ls has not been applied. Table 2 is a list of the options that can be used with the ls command to accomplish the specified tasks.

Table 2. ls Command Options

	OPTION
	TASK

	-a
	list all entries in the directory

	-c
	sort on time of file modification or creation

	-C
	force multi-column display

	-F
	marks each directory with a “/” and each executable file with an “*”

	-l (lower-case L)
	list in long format

	-p
	mark directories with a “/”

	-r
	reverse order sort of the directory

	-R
	list files contained in sub-directories

	-t
	sort on time of last modification

	-u
	sort on time of last access

	-x
	multi-column output with entries sorted across the page

Most of the options listed in Table 2 can be combined to provide flexibility in displaying directory listings.

Enter $ ls to display the contents of the current working directory.

To include “all” files contained in the current working directory, enter:

$ls -a
UNIX will respond by displaying some files that have a dot as the first character in the filename. Without the “-a” option, ls does not display hidden files.

	Code
	Meaning

	. (single dot)
	Current directory

	.. (double dot)
	Parent directory of the current working directory

	.profile
	A file that contains the default settings for the environment. This file is executed when the user first logs on to the system.

NOTE: The “.profile” file cannot be changed in the current system configuration.

To list the files in the long format, enter:

$ls -l
total 11

-rw- - - - - - -
1
yourloginID

 0
Oct
4
10:50
dir.list

drwx - - - - -
2
yourloginID

64
Oct
3
20:17
textfiles

-rw- - - - - - -
1
yourloginID
 318
Oct
3
19:25
firstfile

-rw- r - -r - -
1
yourloginID
 3703
Oct
3
19:18
newfile.txt

This command option lists each file and subdirectory on a separate line and furnishes specified information about each one. The first line of the display indicates the total number of blocks of file space used by the files in the directory. Each block represents 512 bytes of space. Subsequent lines are displayed in the following format:

	Column
	Meaning

	1
	File type and permissions

	Column 1, position #1
	File type code, one of:
d
= directory
-
= text file
b
= block special file
c
= character special file

	Column 1, position 2-4
	Owner’s permissions

	Column 1, position 5-7
	Group permissions

	Column 1, position 8-10
	Other permissions

	2
	Number of links

	3
	Owner’s name

	4
	Number of characters (bytes) in the file

	5
	Time/date last modified

	6
	File name

File permissions will be discussed in the next example.

Display the directory in “long format” sorted on “time of last modification”. Enter:

$ ls -lt
UNIX responds with the same list of files, but now in order by time and date of last modification.

To display “all” of the files (i.e., including hidden files) in “long format” and “sorted by last modification time/date”, enter:

$ ls -lta
UNIX displays all of the files in the directory, including the hidden files.

To display a list of all the files in the directory, mark directories with a trailing “/”, and mark executable files with an “*”, enter:

$ ls -Fa
Several directories should be marked. Experiment with the other options. This is an important command for conducting efficient file management procedures.

FILE OWNERSHIP AND FILE USAGE PERMISSIONS:

Each file and directory in the UNIX file system has an owner. The owner of the file is usually the creator of the file. When the “ls -l" command is executed, the owner of each file is displayed on the screen. When the “home” directory is displayed using the “ls -la” command, there are two files that belong to someone else. These two files, (. .. and .profile) are owned by “root” and “rjr” respectively. The rest of the files in the “home” directory shows ownership by yourlogonID. By default, every file created by a user is owned by that user. The file owner has the responsibility for managing the security of the file by setting the appropriate permissions.

There are three types of users that can access a file: the owner of the file, a member of a group to which the owner belongs, and everyone else permitted to log on. There are three different access permissions for each of these types of users. The following is a list of actions that are applicable to each file.

r
=
read from the file or directory

value 4

w
=
write to the file or directory

value 2

x
=
execute the file or directory

value 1

Execute permission only applies to files which contain executable commands and directories. In the case of directories, execute means that the user can search through and list the contents of the directory.

The default for file permissions on the FTCC SUN system gives the owner rw permissions on any newly created file. Copied files have the same permissions as the original file. Use the “ls -l” command to verify that each file that has been created in these exercises has “-rw- - - - - - -” permissions set and that the owner id is the same as the user id. Files that were copied from “/user/acct/pubo” have different permissions set,

(-rw - r - - r - -).

Each owner of files must determine what access privileges to allow other users. If other users should be able to read the contents of the file, but not write to the file, then the file permissions should be “-rw - r - - r - -”. This set of permissions allows the owner read and write permissions, and read-only permission for all others. If “others” should be allowed to both read and write, then the permissions should be set to “-rw-rw-rw-”. Write permission allows the contents of the file to be altered. The file can also be erased if the read/write permission is included in the directory permissions as well as the file permission. Note that writing a file of size zero is almost equivalent to deleting a file.

Note that the directory access permissions in student accounts are set to

“drwx - - - - -”. This set of permissions tells UNIX that no other user are allowed to:

1)
list the files in other student user directories,

2)
copy files to/from other students user directories,

3)
delete files in other student user directories,

4)
make other student user directories their current working directory.

Try this command:

$ cd /users/acct/dgbo
change working directory to /users/acct/dgbo

UNIX responds with a message, “/users/acct/dgbo: bad directory”.

The directory is a valid directory. To verify this, enter “ls /users/acct”. The directory “dgbo” is listed. The message indicated that the current user does not have access to the requested directory.

To change the working directory to another user’s directory when permissions have been granted, enter:

$cd /users/acct/pubo

$ ls -l
UNIX responds with the directory of “/users/acct/pubo”. Users have been given permissions to access the directory and to read the contents of some of the files. Files that have “read permission” granted to the group and others, “-rw - r - -r - -”, can be accessed for display and copying. Notice, that students do not have write permissions. Students can not change the contents of the files. Try to edit one of the files with vi. You may have to use the vi command :q! to get back to the $ prompt. Each time vi tries to save changes, the system denies access to the file.

To remove a file, the command “rm filename” is executed. Try to remove test.file from “/users/acct/pubo”, by entering the following command:

$ rm test.file
test.file: 644 mode? y
rm: test.file not removed. Permission denied

$

UNIX attempted to remove the file, but discovered that the user attempting to remove the file did not have write permission.

File “unix.sum.x” in directory pubo that does not have read permissions granted for other users. Try to read the contents of “unix.sum.x” with the cat command. Try to edit “unix.sum.x” using the vi command. In both cases, UNIX denies permission to access the files.

The file permission system allows users to restrict the access of their files to other users while retaining free access for themselves. A file owner can assign permissions to group members and others.

MODIFY FILE PERMISSIONS:

The UNIX chmod command allows the owner of a file or directory to change the access permissions. Use this command with caution. If read/write permission is given to other users, they may decide that they don’t want the file and delete it.

To change the permissions on a file or directory, use the command

“chmod nnn filename”.

 “nnn” is the value of the permissions for the owner, group, and others. A dash in the codes below becomes a zero in the permission code. A valid character in the codes below becomes a one in the permission code. Each triplet forms a binary number which has the decimal representation in the left-most column of the table below.

	Digit
	Permission
Code
	Binary
Code

	7
	rwx
	111

	6
	rw-
	110

	5
	r-x
	101

	4
	r--
	100

	3
	-wx
	011

	2
	-w-
	010

	1
	--x
	001

	0

	000

Change the permissions on file “firstfile”, in your CIS130 directory, to

“rw - r - - r - -”, by entering:

$ chmod 644 firstfile

$ ls -l firstfile

-rw - r - - r - - 1 xxxo

318 Oct 3 19:35 firstfile

From long format directory listing, note that the permissions have been changed to “rw - r - - r - -”.

To change the permissions on “firstfile” to r- - - - - - - -”, enter:

$chmod 400 firstfile
The permission is set for “owner read only”, which should not allow the file to be removed. Before attempting to remove the file, make a backup.

$ cp firstfile firstfile.bak
Now try to remove the file “firstfile”, by entering:

$ rm firstfile
firstfile: 400 mode ? y
UNIX did remove the file! The system did ask if the file was to be removed in spite of the “read only” permission. But when told to go ahead, it did remove the file. Owner’s apparently have special permission status.

To replace “firstfile”, enter:

$ mv firstfile.bak firstfile
Verify that the file is back in the directory, using $ ls -l:.

CONSTRUCTING FILENAMES USING WILDCARD CHARACTERS * and ?
The special characters “*” and “?” are referred to as “wild cards” when used in filenames. They act like the “joker” in a deck of cards, it can match any card. Filenames that contain the “wild card” characters are known as ambiguous file references because they reference a group of files, not one specific file.

The “?” character matches any single character in the name of an existing file. For example, “te?t” would match files with the names “tent”, “test” or any other file name that had exactly 4 characters with the “te” for the first two and “t” for the last character. The third character may be any valid character, since “?” matches anything in that position.

The “*” special character matches anything of any length. For example, “test*”, and “testfile” are all matches. The”*” is much more powerful than the “?”, and as usual, the more power, the more dangerous. The command “rm *” will remove every file in the current directory. BE CAUTIOUS WITH *.

The two special characters can be used together to form ambiguous file name sets. “te?t*” will match “testfile” or “text”.

Try the following command:

$ cat *
Since “cat” will accept multiple file names, this command will cause all files in the current working directory to be displayed on the screen.

To display the directory listing of all files with filenames that begin with a “t”, enter:

$ ls -l t*
UNIX displayed the files that began with a “t” and also listed the files in directory “textfiles” since it also began with a “t”.

CONCATENATING FILES INTO ONE LARGE FILE:

The output of most tasks are less than one page long. A concatenated file of all task outputs requires fewer sheets of paper to print than printing each task separately. In addition to the savings due to printing file contents, there is only one header page for a concatenated file. This example demonstrates how that can be done.

Editing a consolidated file to keep individual output files identifiable can be tedious. Instead, you can prefix a file with a short label file to identify the output. Create a separate label file for each label. For example, let file E1 contain the label “Exercise 1”, etc. Conrad Dailey came up with a good idea (Send him a dollar for it.): Use vi to create a file of asterisks to use as a separator. Store this in a file called Ast. You then can use

cat E1 Exercise1 Ast E2 Exercise2 Ast E3 Exercise3 > Lab4Part1.

Concatenate the contents of unix.sum and vi.cmd, separated by a row of asterisks to make another file Lab4Part1. Enter the following command:

$ cd textfiles
$ cat unix.sum ../Ast vi.cmd > Lab4Part1

These two commands result in file “Lab4Part1” being created. The file contains the contents of unix.sum and vi.cmd.

PART 2

TASKS:

Use redirection to save the output in a file. Name files so that the order of concatenation can be determined. When all of the tasks have been completed, concatenate the output files into one file and send only that file to the printer.

1.
Make a listing of your CIS130 directory. The result is to be stored in file Lab4Part2.1. Use the “long format”, display “all” files and sort on “last time/date modified”.

2.
Make a listing of your CIS130 directory using the option to list all sub-directories and the files they contain. The result is to be stored in file Lab4Part2.2

3.
Change the file permissions on all files to “rw - - - - - - -”. Do not change directory or sub-directory permissions. When the permissions have been changed, make a list of your “home” directory using “ls -lRa”. The result is to be stored in file Lab4Part2.3

4.
Change the working directory to “/users/acct/pubo”. Make a listing of the directory using the “all”, “sort on last time/date modification”, and “long format” options. Remember to use your complete CIS130 directory path name plus the filename for the file to be created by redirection. The result is to be stored in file Lab4Part2.4

5.
Use wildcard characters to construct an “ls” command that will list all of the files in your “home” directory that contain the character string “file”. Use redirection to save the output of the command. The result is to be stored in file Lab4Part2.5

* 6.
Concatenate all Lab4Part2.n files with prefix labels before each file and asterisks between each file. The result is to be stored in file Lab4Part2 (with no extra digit). Send file Lab4Part2 to the printer using lpr.

* 7
Print file Lab4Part1 using lpr.

1
1

