Semaphores: Synchronization Primitives

Reference: Peter Freemen, Software Systems Principles: A Survey, Science Research Associates, Inc (1975), Pg. 129

The solution to the "busy wait" problem is to have a process put itself to sleep when it tests a variable and finds that it cannot enter a critical section. When a process arrives at a critical region, instead of continually rattling the gate to get in, it simply sits down and goes to sleep if it cannot enter. This solution then requires a mechanism so that a waiting process will be awakened by some other agent (the operating system) when the resource being waited for is available.

a) The mechanisms that have been found most useful for this purpose are synchronizing primitives that operate on special variables called semaphores. A synchronizing primitive is a function that is guaranteed: to be executed

b) without interruption once started, and

c) by only one processor at a time in a multiprocessor system.

A semaphore is an integer variable that we agree to operate on by only a synchronizing primitive or a function that initializes it to some value.

The following primitives (called P and V by Dijkstra) can be shown to suffice for the mutual exclusion and synchronization problems encountered in most systems. The square brackets indicate that everything within is executed without interruption.

WAIT(S):
[S  S - 1; if S < 0 then place the process which called WAIT on queue Qs and release the processor for allocation to another process]

SIGNAL(S):
[S  S + 1; if S <= 0 then remove some process from Qs and add it to the ready list for processor allocation]

An initialization function, INIT(S, V), initializes a semaphore S to a value V.

INIT(S,V):
S  V

A property of these primitives is that a positive value of a semaphore (assuming it is operated on by only the initialization and synchronization functions) indicates how many times the WAIT function can be executed without causing the calling process to go to sleep, and a negative value indicates how many processes are on the waiting list, or queue, for control of the resource.

These primitives are used by associating a semaphore with each resource to be protected. Note that the primitives say nothing about how a waiting process is to be chosen. This is a scheduling decision which can be separated from the operation of the synchronization primitives and implemented in any of several ways, depending on the performance criteria of the system.

