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Preface

Studying mathematics, you find that it has many branches and specialties:
(algebra, geometry, topology, differential and integral calculus, combina-
torics), and different theories: (number theory, group theory, set theory,
graph theory, information theory, coding theory, special theories of equa-
tions, operators, etc.. It seems that there is none unifying concept.

But we know only one world, we live in, only one physics, one chemistry,
one biology. There should be only one mathematics, too.

The title of this book is ”Matrix Combinatorics and Algebra”.
Combinatorics is an old branch of mathematics, and its essentials con-

sidered to be elementary, since they are based on good examples. But it
has its limitation: There exist too many identities and still more remain
to be discovered. The mind is boggled by them as Riordan [1] pointed out
because there appears only disorder in abundance. Classical combinatorics
contained many branches which separated later but which are essential for
understanding it. You will find here themes from number and group theo-
ries as well.

Algebra is very abstract science, except for its one branch, linear algebra.
There are studied operations with vectors and matrices. And on these
notions the heart of the book is based.

I think that I found a path into the strange world of combinatorics. It
started long ago when I accidentally discovered that two famous entropy
functions H= −

∑
pj log pj , as defined by Boltzmann [2] and Shannon [3],

are two distinct functions derived from two polynomial coefficients, contrary
to generally accepted views and the negentropy principle.

I had a feeling as Cadet Biegler [4]. Remember his desperate ejaculation:
“Jesusmarja, Herr Major, es stimmt nicht!”. Senior officers quietly listened
the lecture about coding, but the given example did not make sense, because
they had at hand another volume than prescribed by instructions. The
name of the book was ”Sünde der Väter”. Similarly as Švejk, I think, that
a book should be read from its first volume.

It was almost impossible to publish my results, because they did not
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conform with accepted views. My first attempt was rejected from reason
that my explanation was ununderstable. Being angry, I wrote its essence
for a technical journal for youth, where it was accepted as suitable lecture
for their naive readers [5]. Till now, I was not able to publish my result
explicitly. The referees did not accept my arguments. From many reasons.
I was forced to continue my research, discover new relations which proved
my conception. There are very elementary things about graph matrices
which are not explained in textbooks on their suitable place, it means at
the beginning. Thus I hope that I succeeded.

If this book were written one hundred years ago, it could save one hu-
man life, if it were published fifty years ago, it could prevent erroneous
interpretation of the information theory.

Mathematical equations and identities are like pieces of a puzzle. They
are arranged in a traditional way into specialties which are studied sepa-
rately. If mathematicians were unable to realize that both entropy functions
stem from an identity known paradoxically as the Polya-Brillouin statistics
which could be found in commonly used textbooks [6], then some basic
obstacles must have prevent them to interpret their abstract definitions
correctly.

When I studied the entropy problem I knew that it was a combinato-
rial problem because Boltzmann himself connected the function H with a
combinatorial identity. Moreover, I correlated it intuitively with matrices
because: ”I did not even know what a matrix is and how it is multiplied,”
as Heisenberg [7] before me. Usual explanations of matrices did not make
any sense to me.

My approach is elementary: A string of symbols (a word, a text)

• “explanations of matrices did not make any sense”

is considered as a string of consecutive vectors written in bold face
letters as vectors

• “explanations of matrices did not make any sense”

and vectors in the string are written using the formalism

• j = ej = (0, 0, ...1j , ...0)

as a vector column in the matrix form. I named matrices having in
each row just one unit symbol ”naive”. The matrices, obtained by permu-
tations and by finding scalar products of naive matrices with unit vectors,
are counted and results tabulated. The resulting tables of combinatorial
functions have the form of matrices and matrix operations as multiplica-
tion, transposition and inversion can be performed on them. Applications
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of matrix operations were common in combinatorics as the Kronecker func-
tion δij , which is an implicit application of inverse matrices. Riordan has
given many examples of their use. However, matrix technique was not
used systematically and combinatorial identities were not connected with
intrinsic properties of vector spaces.

Sums and differences of two naive matrices are studied in the second
part of the book. They are known as graphs. The block designs could
form the next step. They are exploited in advanced combinatorics. Blocks
have matrix form and the numbers of distinguishable blocks are searched
for. Hall [8] began his book by chapters surveying classical combinatorics
before he treated block designs, but no attempt was made to use an unified
matrix technique to traditional combinatorics and explain combinatorial
problems as counting naive blocks.

When I connected combinatorial problems with properties of countable
vector spaces, I discovered another way into the Euclidean space. I can clear
up, at least I hope so, how this space is built. Some of its basic properties
are not explained in textbooks. Either mathematicians do not consider
them important, or they simply ignore them. Of course, a possibility exists
that they keep them as hermetic secrets unexplained to uninitiated. In any
case, the Euclidean space has very strange properties.

This book is an elementary one. Only exceptionally results of higher
mathematics are introduced, and then without proofs. Nevertheless, I do
not think that it is an easy book. It shows how complicated the world is,
that everything is connected with everything. I try to explain some parts of
combinatorics and matrix algebra in an unconventional way. The purpose
is not mathematical rigor or practical applications but the achievement of
intuitive understanding of vector space complexity. I prefer full induction
to generating functions and the main purpose of the book is to show that
the world has not only three dimensions, we can move in. I must admit
that I myself have difficulties trying to visualize some elementary things.
Some solutions I found only after very long periods of thinking, as if the
right way were blocked by invisible obstacles.

Before we start let us make a note about the number systems. Every-
body knows the decimal one:

0 = 10−∞; 1 = 100; 10 = 101; 100 = 102 .

Somebody knows the binary one:

0 = 2−∞; 1 = 11 = 20; 10 = 21; 11 = 3; 100 = 4 = 22 .

But nobody, as it seems to me, studied the unitary number system:
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1 = 11; 11 = 2 = 12; 111 = 3 = 13.

The difference is that the system starts from the first power of 1, which
is undistinguishable from its zero power

1 = 1−1 = 10 .

Logarithm of 1 with the base of logarithm 1 is again 1, logarithm of 111
with the base of logarithms 1 is 3.

Mathematical operations in this system are simple:
addition

111 + 11 = 11 111

subtraction

111− 11 = 1

Multiplication and division should be written as powers, e. g. multipli-
cation (111)11, but it can be arranged as blocks

11 × 111 = 111
111 = 111 111

and division

111 111 ÷ 11 = 11 11 11 1
11 11 1

11 1 = 111

We will use this system implicitly without mentioning it. There will
be some problems with notation. Not enough letters are available to use a
special one for each function. We will use some letters for different functions
without warning. Figures, tables, and equations are indexed separately
in each chapter.

One difficulty of a systematic exposition is that you can not understand
everything completely at once. It is necessary to introduce concepts con-
secutively. New knowledge modifies previous definitions. Therefore, some
topics will be treated repeatedly, when it becomes possible to exploit newly
introduced techniques. Be patient, please, when something seems to be too
unimportantly detailed. If you really want to understand, reread the book
many times.

I have mentioned books of Riordan [9] which were important for com-
binatorics. Similarly should be mentioned Harary for graphs [10, 11] and
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the book of Cvetkovic̆, Doob and Sachs [12] for eigenvalues of adjacency
matrices. Some parts of the present book are compiled from journal arti-
cles. I wish to express my acknowledgement especially to members of the
Zagreb group for numerous reprints.

This can be considered as second edition of this book. I corrected some
formulations and an error concerning of gamma function of negative num-
bers and added a new generating function of natural numbers.
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Chapter 1

Euclidean, Hilbert, and
Phase Spaces

1.1 Preliminary Notes

It is generally believed that we are living in a three dimensional space with
3 possible directions and their opposites: forward and backward, left and
right, up and down. Sometimes the time is added as the fourth dimension
with specific properties. The time is indispensable for movement. We can
not move in time physically, since it is a stream which drift away everything,
but our mind can move in time without any difficulties.

Our notion of the space is based on our book form: a point has three co-
ordinates corresponding to the page, line, and column numbers, respectively1.

Three dimensions of a book are formed by the given convention from
a string of symbols. Too long strings are cut into lines, too long strings of
lines are cut into pages and eventually too long sequences of pages are cut
into volumes forming the fourth dimension since we must determine at first
positions of symbols in lines. There exist different forms of books, as for
examples scrolls. Strings of symbols can be wound on reels, or rolled up
into balls, and they remain essentially unchanged. Similarly the points of
the space can be indexed in different ways.

Books exist without any movement but when we read them, we need
time to transfer their symbols into our brain, to remember essential facts
and thoughts, to transcribe the book into our brain. The world is a word,

1There exist polar coordinates giving positions as on reels, too, but they are outside
our study.

1
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a very long one, in a foreign language. We must learn, how to understand
it.

There exist one essential difference between a book and our world. The
world is moving. As if a book itself were constantly transcribed. Some
parts seem to us to be constant, but somewhere invisible corrections are
made constantly. The world is in instant a the book A, in the next instant
b the book B. All possible states of the world form a library.

But we will analyze at first the simpler case, the unmoving text.
The three dimensions of the space are not equivalent. To move forward

is easy, backward clumsy, left or right movements, as crabs do, are not
normal, up and down we can move only in short jumps (long falls down
end dangerously). In books eyes must jump on the next line, a page turned,
a new volume opened. Increasing efforts are needed in each step.

Mathematics abstracted these differences. The three dimensions of the
space are considered to be equivalent and orthogonal.

Our world seems to be limited by these three dimensions. We are not
able to find the fourth geometrical dimension which would be orthogonal to
the first three. This is a source of many difficulties and misunderstandings.
Mathematicians try to avoid them by concealing decently our inabilities as
a shame.

From ancient times the ortogonality means that between two straight
lines the right angle R exists. Actually there must be always 4 R if two
lines cross

R R

R R

The third straight line in the plane must be either parallel to one them,
and then it crosses the other one, or it crosses both of them, and then they
form a triangle, except lines going through the cross of the first two lines.

The most important property of right triangles is, that the squares of
their hypotenuses are equal to the sums of squares of both other sides as
on Fig. 2.8

The smallest right triangle which sides are whole numbers has sides 3, 4,
5 and their squares are 9 + 16 = 25. The relation between the sides of right
triangles is known as the Pythagorean theorem. The knowledge of right
triangles was one from the first mathematical achievements of mankind.
The pyramids have square bases. Their triangulation was very accurate
due to exploitation of this knowledge.

But similarly as we are not able to find the fourth dimension, we are not
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Figure 1.1: Pythagorean theorem. a2 + b2 = c2
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Figure 1.2: Consecutive Pythagorean addition. New vectors are added as
orthogonal to the sum of previous ones.

-

?

�

+

a

b

c

d

R

R

R

uur
s

^

W

able to decide if a set of numbers does not correspond to a set of orthogonal
straight lines which lengths are corresponding to the given numbers. We
form consecutively right triangles as on Fig.1.2

Each new line is orthogonal to the right triangle sum of all preceding
lines. Try to form a three dimensional model, putting a the third straight
line orthogonal to the plane in which the first two lines lie. Then rotate
this line in the plane the orthogonal to the hypotenuse, folding it down till
it touches the plane. Now there there appears place for the fourth vector
again orthogonal to the hypotenuse of the first three vectors. We get the
general equation

L2 =
∑

m2
j , (1.1)

where m2
j stands for n different abscissa and L2 is the square of the

length of all n abscissa. We can rotate consecutively each vector of the
plane in such a way that it forms a right triangle with the sum of all other
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(n − 1) vectors, but we must not consider simultaneously more lines or
we find that they are not orthogonal as we clearly see on Fig.1.2 where a
series of right triangles was drawn.

If we had at disposal more dimensions, we could decompose such a sum
into n orthogonal directions.

The sum of n squares with side values (lengths) m2
j can be in its turn

decomposed into a Pythagorean triangle which squared sides a, b, and c
are

a2 = nm (1.2)

b2 =
∑

m2 − nm (1.3)

and

c2 =
∑

m2
j , (1.4)

respectively. m in 1.1 is known as the arithmetical mean. Actually,
the arithmetical mean can be identical with one from n summands. The
arithmetical mean is calculated usually by finding the sum of all m values
and dividing it by n

m =
∑

mj/n. (1.5)

The straight length of the side is its square root. Here the square root
of n appears somewhat surprisingly, but it is the length of the diagonal of
n dimensional cube. Similarly the third side of the triangle (1.3) can be
normalized by dividing it with n. Then we get the value σ2 known as the
dispersion

σ2 = 1/n
∑

(m2
j − nm2). (1.6)

Its square root, comparable with the mean, is the standard deviation
σ. For example, take the values 1, 2, 3, 4. Their mean is 2.5, the sum of
squares 30 = 1 + 4 + 9 + 16. The dispersion is 1/4(30− 4× 6.25) = 1.25.

Calculating the mean and the standard deviation we need not to know
the directions of both legs, since they are determined automatically by
their lengths, as when a triangle is constructed from the known lengths of
its three sides. We draw two circles with diameters a and b on both ends
of the side c. Where the circles cross, the third vertex lies. The direction
of all sides in the multidimensional space is abstract for us.
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1.2 Euclidean space

The space of right triangles and never crossing parallel lines is known as the
Euclidean space. Its generalization to infinite many dimensions n → ∞
for the sum 1.1 is known as the Hilbert space. An Euclidean space with
n dimensions forms a subspace in it. Euclides based his geometry on five
postulates:

1. To draw a straight line from any point to another.
2. To produce a finite straight line continuously to a straight line.
3. To describe a circle with any center and distance.
4. That all right angles are equal to each other.
5. That if a straight line falling on two straight lines makes interior

angles on the same side less than two right angles, if produced infinitely,
meet on that side on which are angles less than two right angles.

The fifth postulate is superfluous. It follows directly from applications
of the first four postulates for the following construction. We take a square
ABCD. All its right angles are according to the 4. postulate right, and
all its sides are straight lines. We add to this square ABCD a new square
CDEF and align the sides AE and BF according to the 2. postulate. To the
obtained rectangle ABEF, we and a new square EFGH and align again the
sides AG and BH according to the 2. postulate. In such a way we continue
with adding of squares infinitely, eventually on the other shorter side of the
rectangle.

In such a way we produce a pair of parallel straight lines. There are
two possibilities that the long sides of the infinite rectangle meet or diverge.
Either these long sides are not straight lines meeting the demands of the
2. postulate, or the right angles of consecutive squares did not meet the
demands of the 4. postulate. The fifth postulate is a consequence of an
application of postulates for an infinite construction.

The problem of ortogonality is loosing its importance in the Hilbert
space. If you have a store of infinite many vectors, you can pick any two
as the first ones. You can be sure, that you find the third one which is
orthogonal to the first two. So you continue. You will be exhausted before
you will be able to empty the store. Or you can be lazy, and to use alterna-
tively vectors with angles greater and smaller than orthogonal. The errors
will compensate. Euclides introduced axioms into mathematics. Space and
its elements are defined by a set of propositions. A disadvantage of this
approach is that we don’t know a priori which elements form the space.
We will use another approach and generate elements consecutively. We en-
counter spaces of many dimensions by recognizing that we are not alone in
the space. There are other people living and many things exist in this par-
ticular space. Each entity has its own position in the space. Listing these



6 CHAPTER 1. EUCLIDEAN, HILBERT, AND PHASE SPACES

positions, we need for each object its specific line with its coordinates. In
each line must be as many coordinates as the space, entities are embedded
in, has dimensions. If there were m entities in n dimensional space it would
be necessary to know mn coordinates, in the 3 dimensional space we need
for m entities 3m coordinates and in 1 dimensional space still m coordinates
to determine positions of all objects. Spaces with m objects are known in
physics as phase spaces2. They have curious properties and we can sense
directly some of them, as for example temperature and the wind velocity of
a system of molecules of air are, which correspond to mathematical notions.
Each molecule has at ambient temperature mean velocity several hundred
meters per second. Impacts of tiny molecules on walls of the container pro-
duce the pressure. Chaotic collisions of the molecules moving in different
directions lead to a stable distribution of particle velocities.

These velocities decompose into two components. One component is
formed by a part of movement which all particles in the given volume have
common. This component, the mathematical arithmetical mean, usually
great only few meters per second, as compared to the above mentioned
hundred meters per second, we feel, when we are inside it as its part, as
the wind, the physical property of the system of molecules. The other
component is the dispersion from the mean vector velocity. It is known as
the thermal motion of molecules, the temperature.

We will show that all phase spaces are isomorphic. Some of their prop-
erties do not depend on the dimensionality n of the space the system of
m entities is embedded, but they are given only by the number of the enti-
ties. The phase space is thus a reality and not a mathematical construction.
Unfortunately our experience is limited by properties of the cave we are liv-
ing in as Plato wrote. It is extremely difficult to overcome this handicap
and see ideal spaces behind shadows they produce. Shadows of the outer
world, our eyes project on the wall of our scull cave (retina) are two dimen-
sional. The third dimension we recognize by efforts of eye muscles focusing
the images on the retina. This is done automatically. Higher dimensions
we recognize by efforts of our brains or their extensions, computers. It will
take a long time, before we accommodate us and get accustomed to the
notion of the higher dimensions in the same way as our vision is used to the
three dimensions. Our visual organs were developing for hundred millions
of years. The notion of a possibility of invisible spaces was born about
2500 years ago, study of their properties started about 250 years ago, and
computers which made their understanding easier appeared about 50 years
ago. It takes time.

2The number of objects is there given as n. To avoid confusion with n dimensions,
we use the symbol m.
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1.3 Unit Vectors ej

Now it is time to introduce the notion of the linear translation. If a mi-
croparticle moves in the Wilson chamber (or a plane in stratosphere), it
leaves a trace of ionized particles and molecules condensing on them. Imag-
ine that even an abstract point, when moving, leaves such a trace. We call
it a vector and draw it as a line with arrow showing the direction of the
movement −→. To shift a point, we must apply this trace connecting both
positions of the point, the initial and the final ones, respectively. We dis-
cussed the ortogonality and it is obvious that the vectors can be orthogonal.
But we defined ortogonality only between straight lines and thus we sup-
pose that the vectors are straight. Of course, motion in space need not
to be limited exclusively to the motion along straight lines but we try to
keep our space as simple as possible. A method could be to divide bent
vectors into tiny straight vectors with slightly different directions. This are
methods of differential and integral calculus. We can assume, that spaces
with bent vectors are isomorphic to the space with straight vectors. Next
we introduce a special place in our n dimensional space from which we will
measure all translations. This point we will call the center of the coordi-
nate system. Then we define n points on a sphere (circle) with its center in
the center of the coordinate system. We accept the radius of the sphere as
the unit length. We can imagine that the points on the sphere are the trans-
lated center of coordinate system and we will call each vector connecting
the center of the coordinate system with the defined n points on a sphere
the unit vector ej . The notation of the unit vector ej is a row in round
brackets with n elements. In physics symbols with arrows are used as ~.
(n − 1) elements of the vector ej are zeroes and there is only one unit
element on the j-th place

ej = (01, 02, . . . , 1j , . . . , 0n). (1.7)

Equal length of all unit vectors ej in (1.3) is not an essential condition
of the existence of a vector space. We could define unit vectors ej in (1.3) as
having different lengths, make all operations as with vectors having equal
lengths, and only then modify results according the defined lengths. A cube
which sides are not equal is a rectangular parallelepiped. Its volume, for
example, can be calculated as

• side a = 4.4 cm

• side b = 3.9 cm

• side c = 0.4 cm
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• volume = 4.4× 3.9× 0.4 = 6.864.

The other possibilities are

• side a = 2.2× vector a = 2 cm

• side b = 1.3× vector b = 3 cm

• side c = 0.4× vector c = 1 cm

• volume = 2.2× 1.3× 0.4 = 1.144

• volume of the parallelepiped = 2× 3× 1 = 6

• total volume 1.144× 6 = 6.864.

Vectors which begin in other places of the space are compared with
these specimen vectors ej beginning in the center. They are considered to
be identical with unit vectors ej , if they are collinear. Of course, vectors can
be shorter or longer, can have opposite directions, but such differences will
be remedied by algebraic means later. Sometimes vectors do not coincide
with unit vectors, but with their linear combinations. We suppose, that
the unit vectors ej are orthogonal by definition.

We will subject these unit vectors to different mathematical operations.
We find their sums, differences, products and we will try even to divide
them. These operations will be done in algebraic form. But before we
proceed, we must investigate the results of vector translations on some
examples, to interpret the algebraic results correctly.

How can be two vectors added? Suppose that the center 0 was at
first translated into a point a by the vector ea and then to the point with
coordinates ab by the translation eb. There are another possibilities how
to reach the same point. We can at first make translation eb and then ea.
In textbooks of algebra you can find that the summation is a commutative
operation. This word means that the result of the operation does not
depend on the ordering of terms in the operation. It is true: The final
position in space does not contain information about the way, how it was
reached. But there is still another possibility how vectors can be added:
Both vectors can act simultaneously and the point is shifted directly in
direction between both of them as pulling a car by two ropes as on Fig.1.3

1.4 Matrices

Thus we need three possibilities how to write a sum of two vectors. We
must have the opportunity to write them as consecutively acting vectors or
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Figure 1.3: Vector action. Consecutive actions A and B and the simul-
taneous action S of two vectors a and b lead to the same final position
R
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as simultaneously acting vectors. Simultaneously acting unit vectors can
be written easily as a sum of two unit vectors in a single row. The rule is
simple, elements are added in their places:

(1, 0, 0) + (0, 1, 0) = (1, 1, 0).

In this notation we have already n simultaneously acting vectors in a
row. Thus we must write consecutive vectors in such a sum as a column of
row vectors. We get two different columns for our examples(

(1, 0, 0)
(0, 1, 0)

) (
(0, 1, 0)
(1, 0, 0)

)
.

Such columns of m vector-rows having in each row n elements are known
as matrices. The row brackets and commas are wiped out of matrices.
Notice that in a matrix its elements are arranged in columns similarly as in
rows. It is thus possible to use the convention that a matrix is formed from
n consecutive m dimensional vector-columns. Since we have introduced for
individual columns the lower index j going from 1 to n, we can use for rows
of matrices the index i going from 1 to m. Remember, the index i is present
in texts implicitly, as the natural order of consecutive symbols. It need not
to be given explicitly.

Sometimes it is convenient to let both indices start from zero. Then
they go to (m − 1) or to (n − 1), respectively. It can be found one matrix
index written over the other one. But it is better to reserve the upper index
for powers. When two same symbols follow, For example: aa, is written
shortly a2. Doing so, we treat consecutive vectors as if they were multiplied,
and the multiplication is a noncommutative operation. The result depends
on the ordering of terms in the operation. We will not use any symbol for
multiplication of vectors and or matrices.
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We have in our examples the small round brackets in all rows of matrices
within the larger brackets used for matrices. Matrices are also bordered by
double vertical lines or they are written into a frame. We will write them
sometimes without any trimmings, but when they touch, we separate them
by simple lines.

It is still necessary to consider different matrices with unit vectors:(
0 0
1 1

) (
1 1
0 0

) (
1 0
1 0

)
.

Matrices with empty rows are, maybe, superfluous, since no action cor-
responds to the given row, but notice that the third matrix can be obtained
from the second one by rotating the elements around to the main diagonal,
or changing the row i and column j indices. Matrices M are transposed
into matrices MT. A matrix with two identical unit vectors in consecutive
rows can be interpreted as two consecutive translations going in the same
direction. The resulting position in space can be obviously described by
the vector (2, 0). But if we try to interpret this vector with another num-
bers than 0 and 1, keeping in mind our convention that vectors in a row
are simultaneous, we have some difficulties with the interpretation of these
elements. We can imagine that the translation requires a greater force to
be performed and that it has double intensity as in music a forte. To be
consistent, we can not interpret other matrix elements than 0 and 1 simply
as the length of a vector, unless we introduce such vectors by some algebraic
operation which will make such multivectors allowed elements in our space.

The exclusion principle exists in quantum mechanics, formulated by
Pauli. It states that in a system can not be two identical particles. From our
experience we know that in one place can not be two things simultaneously.
We will apply such principle for vectors, too. Lets limit at first on matrices
having just one unit vector ej not only in each position but in each row.
We will use the symbol ej not only for geometrical translations in space
but also for different objects, e.g. for letters of this book. (I write letters
in rows, therefore the text is a row of columns and each letter j must be
substituted by the corresponding unit vector-column eT

j ). Matrices having
one unit element in each row seem to be too ”naive” to be studied, but we
will see that they have quite interesting properties3.

One of the useful properties of naive matrices N is that they can be
interpreted either as a string of m unit vectors ej going from the center
of the coordinate system to some point in n dimensional space or as a
position vector in m dimensional space. To keep our convention about con-

3It was difficult to find a name for them, because other suitable names, as primitive,
elementary, were exploited.
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Figure 1.4: A face in 8 dimensional space. The ends of individual vectors
are connected with their neighbors by straight lines.
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secutivity and simultaneity of vector translations, we transpose the naive
matrix N into NT. We write it as a row of the unit vectors-columns ej .
The unit symbol will appear in the j-th row of the n dimensional column
instead in the j-th column of the n dimensional row. The index system of
the unit element is a convenient mark of the length of the vector ei that
goes from the center of coordinates in m dimensional space. There is no
element which could interfere with this interpretation. But distances from
the center can be zeroes. Therefore the row indices need to be counted from
zero, subtracting one from each original index i. In such an interpretation
the matrices NT correspond to faces (Fig. 1.4).

Drawing m vectors on the paper, indexing them consecutively, marking
the length of each vector, and connecting the marks by straight lines we get
a figure suggesting a face. Each face represents a point of the m dimensional
space and there are as many faces as there are points in this space. Do you
know your face? It is formed differently in different spaces.

Only after we get acquainted with all naive matrices by counting them,
we will study their sums and differences, that means the properties of ma-
trices having in each row a sum or a difference of two unit vectors. Before
we move to matrix arithmetic we are going to learn, how to operate with
matrices. At first we introduce matrix products.

1.5 Scalar Products and Quadratic Forms

Having two vectors a, b, we can find mutual projections of both vectors as
on Fig. 1.5.

The projections are known as the scalar products. If both vectors are
orthogonal, the scalar product is 0, if they are collinear, the scalar product
is, after normalization, 1. The unnormalized scalar product of a vector with
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Figure 1.5: Scalar products. Both vectors are projected on the other one.
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itself is known as the quadratic form. The normalization means that the
scalar product is compared with the unit length of the projected vector. A
scalar product seems to be therefore just cosine of the angle between both
vectors. But it is not as simple as it seems to be.

The word product is connected with the operation of multiplication.
How do we multiply two vectors? Take a vector column v and multiply
it by a vector row vT. Each element j of the column is multiplied by
the matching element i of the row and the products are summed into one
number. For example: (1, 1, 1)× (3, 1, 0)T is written in the form

3
1
0

1 1 1 4

The result was obtained as 1×3+1×1+1×0 = 4. Otherwise multiplying
matching elements vertically

(1, 1, 1) ×
(3, 1, 0)

(3, 1, 0) = 4

Changing the row and column position, we get the same result

1
1
1

3 1 0 4

3×1+1×1+0×1 = 4. When multiplied, the elements of one vector are
weighted by the elements of other vector. All weights in the first example
were 1. I think that you already know scalar products of vector columns
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with the unit vector-rows, since they are used for finding sums of more
numbers written in columns. In the second example the weights were 3,
1 and 0, respectively. The unit elements got different weights. Or the
operation was simply 3 + 1 + 0 = 4.

If a vector is weighted by itself, we get its quadratic form

1
1
1

1 1 1 3

and

3
1
0

3 1 0 10

Here we have 1× 1 + 1× 1 + 1× 1 = 3 and 3× 3 + 1× 1 + 0× 0 = 10,
respectively. Corresponding elements of both vectors are multiplied and
from products their sum is made. You already know the result of the first
example, since it is simply a sum of n units (here n = 3). It seems to be
elementary but it is not. Recall what was said about the Hilbert space and
analyze the scalar product of the unit vector J with the unit vector JT.
(The unit vector J is the vector column, the unit vector JT is the vector
row. All their elements are 1). The scalar product is just the sum of vector
elements, the quadratic form is the square of their Euclidean length. If you
think that we should work with square roots of quadratic forms, imagine
that the unit vector J represents n people. The quadratic form just counts
these people. Should we determine their number as

√
n (square root from

n)? We introduced the Hilbert space and we will work with scalar products
and square forms as with basic vectors without finding roots.

We obtained in the scalar products from two n (m) dimensional vectors
just one number. The multiplication decreased the dimensionality, we got
just one number (scalar) determining the length of the first vector. There-
fore the product of a vector row multiplied by a vector column from the
right (natural order of both vectors, the vector column was multiplied by a
vector row from the left) is called the inner product. There exists the outer
product. This is obtained when we change the positions of both vectors and
multiply a vector column with a vector row from the right:

1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

3 1 0
3 9 1 0
1 3 1 0
0 0 0 0

Here three one dimensional vector columns acted on three one dimen-
sional vector rows. The whole vector column was weighted by all elements
of the vector column, and as the result matrices of dimension 3 × 3 were
obtained. Instead two numbers we got two matrices, each having 9 matrix
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elements. The outer product matrix is called tensor 4. Notice that the el-
ements of both inner products appeared as diagonal elements of the outer
products. Their sum, known as the trace of the matrix, is identical with
the final form of the inner product.

The scalar products can be made from matrix vectors, too. Scalar
products of matrix vectors multiplied by vector-rows from the left are just
vector-rows and matrix vectors multiplied by vector-columns from the right
are just vector-columns, respectively. The multiplication is decreasing the
dimensionality of the matrix vector:

vector-row×M = vector-row (1.8)

M× vector-column = vector-column . (1.9)

The vector-row is multiplied from the right consecutively by all columns
of the matrix and the result has as many places as the matrix columns. The
vector-column is multiplied from the left consecutively by all rows of the
matrix and the result has as many places as the matrix rows.

If both vectors are matrices, the multiplication must be made for all
combinations of rows and columns. The product is again a matrix. In the
case of square matrix vectors, both products have identical dimensions and
the distinction between inner and outer space is lost.

1.6 Matrices in unit frames

The quadratic form JTJ counts the elements of the unit vector J. It is
simultaneously an operator

JT(∗)J. (1.10)

If we insert inside this product a matrix M

JT(M)J , (1.11)

we get the sum of elements of the matrix M. JTM is a n dimensional
vector row and MJ is m dimensional vector column. The next multiplica-
tion by J (or by JT) sums the elements of these vectors, respectively.

When we insert in (1.10) instead M as in (1.11) the quadratic forms
(MM)T or (MTM), we get the quadratic forms of the scalar products
JTM and MJ.

4Tensor is a muscle that extends a part to which it is fixed. Tonsor is a barber.
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We noticed that a vector column is transposed into a vector row and the
other way around. If we repeat this operation, we obtain back the original
vector form:

(vT)T = v. (1.12)

A matrix is transposed in such a way that all vector columns are trans-
posed into vector rows and the other way around. It means that in the
transposed matrix the indices i and j are exchanged.

At a transposition of a product of two matrices (a vector row or column
is a matrix which has either m = 1 or n = 1, respectively) both matrices
exchange their places, thus

(JTMT)T = MJ and (MJ)T = JTMT . (1.13)

We obtain two quadratic forms : JTMTMJ and JTMMTJ. We see
that both products have the same frames JT(∗)J, which act on a matrix
product which is inside. This frame just counts elements of the inner matrix.
The quadratic forms MTM and MMT are more important and interesting
than the final product, because each of them contains more information.

We supposed that the original matrix M had m rows and n columns,
both m and n being different. Therefore the transposed matrix MT had n
rows and m columns and was different from the original matrix M. We say
that such matrices are asymmetrical. Both quadratic forms are symmetrical
matrices. MTM has n rows and n columns, MMT has m rows and m
columns. On the traces of both product matrices there are the sums of
squared elements m2

ij of the matrix M. This is the Hilbert length of the
matrix vector and both traces which have the same length lie on a sphere
with the diameter of the matrix vector. Off diagonal elements of both
quadratic forms form with their traces the right triangles having both unit
projections JTM and MJT as hypotenuses (Fig. 1.6).

Both scalar products transform a matrix into a vector, row or column.
They count simply the elements in rows or columns of the matrix M. They
give us the final results of all translations, MJ in the m dimensional space
of rows, JTM in n dimensional space of columns. Finding these sums, we
are reducing dimensionality of the space, instead of mn elements we have
only m or n elements, respectively. When we reduced the dimensionality
of the matrix space, we simplified the matrix vector, but we lost information
about original order of vectors in the matrix. And moreover, at least in
one quadratic scalar product, we joined together different vectors. If these
vectors represented different things, we counted together apples with pears
as fruits.
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Figure 1.6: Matrix vector system. M – matrix vector, JTM – matrix
vector projection into columns, MJ – matrix vector projection into rows,
Tr(MTM) – trace vector of the inner quadratic form, Tr(M)MT) – trace
vector of the outer quadratic form, Λ – eigenvalue vector, M−1 – inverse
matrix vector.
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The matrix vector system on Fig. 1.6 is composed from the matrix M
itself and its two projections. JTM and MJ. These projections decompose
into trace vectors, Tr(JTM) and Tr(MJ), respectively. These trace vectors
have an important property: They have the same length as the matrix
vector M itself. Even the eigenvalue vector Λ has the same length as the
matrix M and it can substitute both quadratic forms. The inverse matrix
vector M−1, if exist, belongs to the matrix vector system (sometimes it can
be substituted by the generalized inverse).

A matrix vector has mn elements. It is simplified by its projections into
the separated spaces of rows and columns. We disregard in this projection
some properties of the matrix vector. We are gaining some information but
the price for it is loosing another information. Finding of quadratic forms
corresponds to the logical abstraction. The most important property of
both quadratic forms is their ability to replace matrix vectors. This ability
is not a mere mathematical construction. It is based on physical experience
because the world we live in is simply constructed in such a way.

To conclude: A matrix corresponds to an action and its quadratic form
to the result of this action.

Both quadratic forms have this important property: They split the space
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and its elements. Let the matrix M be a list of n different books (with an
unknown number of copies) belonging to m different persons. Each row is
a catalogue of the i-th personal library, each column is a list of occurrences,
it registers in which libraries the j-th book can be found. The quadratic
form MTM is the space of n books, on the diagonal there are numbers of
libraries in which each book can be found. MMT is the space of libraries
but its elements are books. Compare it with ancient sayings that there is
a measure in everything or that the measure of everything is man.
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Chapter 2

Construction of the
Vector Space

2.1 Number and Vector Scales

From the history of mathematics we know how carefully mathematicians
constructed the number axis, introducing consecutively natural numbers,
rational numbers, irrational numbers. It is not necessary to remember all
problems connected with the notion of continuum and with the different
axiomatic systems. The number axis forms one dimensional space. The
next steps, the formation of two, three and more dimensional spaces were
made as a audacious jump by so called Cartesian products.

The recipe seems to be simple: Take at least two one dimensional spaces
and multiply them together. The set theory remedied some faults but it
did not connect its set spaces with the vector spaces and both disciplines
remained separated.

When we consider the natural number scale1

(0) — (1) — (2) — (3) — (4) — (5)
and compare it with a unit vector ej scale

(0) −→ (1) −→ (2) −→ (3) −→ (4) −→ (5)

we see that the only difference is, that the vector scale is oriented and
the number scale is not.

1Whole positive numbers, zero including.

19
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2.2 Formal Operations with Vector Sets

We have introduced the unit vectors ej in Sect. 1.2 as basic units of our
space. At first, we will allow only positive translations corresponding to
natural numbers. This means that a matrix vector can go only forwards
from the center of coordinates and never back. A string of consecutive
vectors forms a path. All possible paths in this space form a lattice. We
already know, that the distinction must be made between a path and its
final point, the position vector. This distinction is the same as between
reading and mere counting words. Suppose that we have two vector strings
for example

aababac

and

abcaaba .

Both lead to the point with coordinates (4, 2, 1, 0, 0, . . . ). We will
write it sometimes as (a4b2c1d0e0 . . .). Such a notation is useful at some
operations as

(a + b)2 = a2 + 2ab + b2 ,

where we need to distinguish the meaning of terms 2a and a2. The
multiplier gives the number of the strings, the power determines the length
of the vector. Now it is convenient, that the base of the unit vectors is 1.
The upper indexes, having meaning as powers of the unit vectors do not
change them. When we accept that x0 = 1, the zero power vector is just
a multiplier one. Thus it is not necessary to write this 1, because it does
not change the product as a× 1 = 1×a = a.

All vector strings ending in a point, as represented by the naive matri-
ces N, are equivalent. There are defined mathematical operations, which
transform a naive matrix into another equivalent matrix. If this transforma-
tion does not give identical results, then both matrices belong to different
classes. Two equivalent naive matrices have the identical quadratic form
NTN and lead to one point. For example

(aaba = (a3b) = (baaa)

Here we have the first example how useful the introduction of quadratic
forms was. Later we formulate another equivalence classes of naive matri-
ces.
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To be able to distinguish between 2a and a2 (between parallel and con-
secutive translations), we need the same difference also for construction
of the multidimensional space from the unit vectors. Therefore, for vec-
tor sets, unit vectors, and their strings existing simultaneously, we will use
the symbol of summation

∑
. For consecutive vector sets, we will use the

symbol for multiplication Π. The multiplication is transformed into the
summation on a logarithmic scale. Using the unit base of logarithms, the
number and its logarithm coincide, or do they not? For example

aaaaa = a5, lga a5 = 5

This convention inverses the order of both operations in the space con-
struction. Classical way was to have two axis, say (1 + a + a2 + . . .) and
(1+b+b2 + . . .) and to multiply them. As the result we get positions points
of a square

1 a a2 . . .
b ab a2b . . .
b2 ab2 a2b2 . . .
...

...
...

. . .

This square can be multiplied later by the third axis and the 3 dimen-
sional cube is obtained, then the fourth axis can be applied and so higher
dimensional cubes, sometimes called hypercubes, are obtained. We could
speak about hyperplanes, hyperedges and so on, but we will not use this
prefix because it would hyperinflate our text.

The space is constructed consecutively in layers from the sets of n unit
vectors representing n dimensional space. For example:

(a + b)0 + (a + b)1 + (a + b)2 + (a + b)3 + . . . . (2.1)

The individual products in the sum are vector strings ending on the
lines orthogonal to the diagonal vector I. The square with the side 0 − 2
is obtained from these points by truncating points a3 and b3 from the
incomplete layer 3 and adding 6 strings a2b2 from the fourth level product
(a + b)4:

1 a a2

b 2ab 3a2b
b2 3ab2 6a2b2 .

The numbers at the coordinates give count of different vector strings
going to the given natural point of the square. For example: 3 strings
aab, aba, baa lead to the point with coordinates a2b. The commutative
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Figure 2.1: Two dimensional space. The unit vector I2 is orthogonal to the
plane simplices.
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algebra is obtained from the noncommutative one by the algebraic operation
transforming vector strings into position vectors.

Vector strings created in the 2 dimensional space by the multiplication’s
(a + b)m go to the points lying on a straight line orthogonal to the diagonal
of the complex as on Fig. 2.1. Later we fill this arranement with numbers,
and we will obtain Pascal triangle.

The sum of n unit vectors ej multiplied m times is the generator of
the vector space. When the three dimensional generator is applied, the
vector strings go to the triangle planes (Fig. 2.2). It ia known in mathe-
matical literature as Pascal pyramid or tetrahedron.

In higher dimensions these would be hyperplanes. Again, we truncate
their names and modestly call them simply planes in all dimensions. But
it inversely means that a line is a plane in the 2 dimensional space and
a point is a plane in the 1 dimensional space. This might seem strange
but an unlimited plane cuts its space into two parts. A point cuts the line
similarly as a line divides a 2 dimensional plane into two parts.

Our vectors were limited only to natural numbers and therefore planes
are generated by the operator

[
n∑

j=1

ej ]m (2.2)

are the elements of the natural space. It includes its limit, points with
the coordinates a0b0, ab0, a0b and so on. The elements of the natural
space are countable and are formed by the vector strings going to points
with nonnegative coordinates. We will call the individual layers the plane
simplices. If you have heard something about simplices than you know that
a simplex in n dimensional space should be determined by (n + 1) points
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Figure 2.2: The first five 3 dimensional plane simplices.
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and we have just n points. But remember that we speak about planes. A
plane in n dimensional space is a body2 in (n − 1) dimensional space and
the missing point is restored.

The planes mentioned above are orthogonal to the diagonal unit vector
I. It is necessary to explain, why there are three unit vectors: I, J and JT.
We have shown that the unit vector row JT and the unit vector column
J have different effects on the naive matrices N, which are basic elements
of our space, or generally on any matrices M. They transform them into
vector rows or columns, respectively. Therefore we need a new unit vector
invariant to the matrices. This vector is the unit diagonal vector I. It is
the square matrix having the unit elements on the diagonal, where both
indices are equal, i = j.

When the unit diagonal matrix I multiplies any matrix either from the
left or from the right, it leaves the matrix unchanged:

IM = MI = M. (2.3)

The unit diagonal matrix I is known as the identity matrix and was
already mentioned its sophisticated formulation as the Kronecker symbol
δij , where δij = 1, if i = j, and δij = 0 otherwise.

Lets continue with the construction of space using the plane simplices
and laying consecutive layers as in an onion. The sums of plane simplices

2My son suggested here to add the adjective ‘solid’. But a solid body is a solid body,
whereas the plain term ‘body’ includes a code, a system, thus it is a more abstract
notion.
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form the plane complex. It is determined by three symbolical operations

m∑
i=0

[
m∑

j=1

ej ]i . (2.4)

If m goes to infinity we obtain the whole natural vector space of the
given dimension.

Compare the sequence of operations with the traditional prescription

n∏
j=1

[
m∑

i=0

ei]j (2.5)

and you will see that we just inverted the ordering of formal operations.
The multiplication in (2.2) is done by upper index i. But we obtained
another kind of space. Our space of vector strings is noncommutative,
whereas the space formed by a lattice of points is commutative. The transi-
tion between both spaces is made by finding of scalar products. This formal
operation corresponds to logical abstraction as it was shown in the previous
Chapter.

2.3 Properties of Plane Simplices

One and two dimensional plane simplices are trivial. Our investigation
starts with initial 3 dimensional plane simplices as on Fig. 2.2. The 3 di-
mensional plane simplices are triangles with 1, 3, 6 and 10 points. Each
upper simplex has (m + 1) more points than its predecessor and it is
relatively easy to arrange them into the 3 dimensional complex. This forms
the positive cone of the 3 dimensional octagon as on Fig.2.3.

The higher simplices differ from lower ones not only by an addition of
a new edge but also by increased number of strings leading to all points
except vertices.

If you compare the 3 dimensional plane simplex with the 2 dimensional
complex, the difference between them consist in the number of strings going
to different points. The origin (0, 0) gets the coordinate (0, 0, 3), points a,
b are transformed into ac2 and bc2, respectively, and so on.

The 4 dimensional simplices are bodies in 3 dimensional space. They are
regular tetrahedrons. If we try to draw them on a 2 dimensional surface, we
must deform them as on Fig.2.4, where their edges have different lengths.
And on a drawing, the inside of the tetrahedron does not appear, unless we
do not draw it in a stereoscopical projection.
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Figure 2.3: Three dimensional plane complex.
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Figure 2.4: The first three 4 dimensional plane simplices and the fifth one.
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The first difficulty appears: We are not able to form from 4 dimensional
planes their complex. Why? All vertices of a tetrahedron must be in
equal distances from the center of the coordinate system. An appropriate
point seems to lie inside the tetrahedron, but the center of the tetrahedron
has the coordinate (1/4, 1/4, 1/4, 1/4). The center of the system with the
coordinate (0, 0, 0, 0) can not be inside the plane, it must lie outside it. The
task of finding this point is similar to task to locate Nirvana. Breathing
exercises do not help. Somewhat more useful is time. We just shift the
whole plane from its original place for one unit length in our thought.
Since this operation has no geometrical coordinate, it solves the task.

Even greater obstacles must be overcome when we try to imagine a five
dimensional plane simplex as on Fig. 2.5.

Its envelope composes from five four dimensional planes, tetrahedrons
having one coordinate zero:

a b c d 0
a b c 0 e
a b 0 d e
a 0 c d e
0 b c d e .

In 3 dimensional space the tetrahedron sides interfere. If we draw
the simplex as a trigonal bipyramide (Fig. 2.5 A), we can see in one moment
two tetrahedrons, say abcd and abce, having the common side abc as the
base of two trigonal pyramides, and in other moment three tetrahedrons
having a common edge de, which goes through the bipyramide. But these
are only sides of the simplex and its inside lies between these five tetra-
hedrons. We must move them aside before we come inside. It demands a
concentration to enter inside planes of higher dimensions.

Or one tetrahedron can be flattened, say abcd (Fig. 2.5 B), and over
this deformed base four tetrahedrons have place which cover the pyramid
twice, once as two tetrahedrons abce and acde, once as two tetrahedrons
abde and bcde. Into 2 dimensional plane the 5 dimensional plane simplex
is projected as the pentagram (Fig. 2.5 C). In all cases the plane simplex
is distorted by squeezing it into the lower dimensional space. In the ideal
state all edges should have equal length.

The 5 dimensional plane simplices of the 6 dimensional plane simplex
cover their 3 dimensional projection trice. The projection in the form
of the tetragonal bipyramide can be divided into two pyramides having
the common side abcd as the base, and then into four simplices along the
axis ef as before at the 5 dimensional simplex.

Or one 5 dimensional plane simplex can be flattened into the regu-
lar pentagon and over this base five 5 dimensional plane simplices have
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place which cover the base of the pentagonal pyramid 3 times, the corners
of the pentagram 4 times its center 5 times. This makes the analysis of the
7 dimensional plane simplex difficult, since the pentagonal bipyramide is
its simplest model.

Time and patience are essential when analyzing planes of higher dimen-
sions. Decompose them into subplanes and decrease their dimensionality
as your homework.

A conjecture outside mathematics: Multidimensional objects can ap-
pear in lower dimensional space only changing constantly their configura-
tions. Thus microparticles emerge in the wave form.

2.4 Construction of the Number Scale

Until now we used only natural numbers and vectors. But we will need
fractional numbers and vectors, too. Now we are able to introduce them
because we have enough space for necessary constructive operations.

Recall the 2 dimensional complex (Fig. 2.1).
The position vector (1,1) goes through the plane simplex (a + b)1 in

a point which has until now no name in our world. We introduce it by
finding its coordinates on both axes. This is done using parallel lines with
both axes. The new numbers are defined as the ratio of the coordinate a
of the position vector and the power of its simplex, or as the ratio of the
coordinate b of the position vector and the power of its simplex, respectively.
In the example the ratio is 1/2.

When this operation is done with all simplices going to infinity (or
equivalently with the infinite simplex), we obtain infinite many points in
the interval < 0, 1 >. All these points are countable by indices i of the
infinite plane. They are known as rational numbers. The rational numbers
outside the interval < 0, 1 > are obtained by adding the rational number
and the natural number (or by multiplying).

The infinite plane simplex itself remained at this operation undivided,
as it was in its natural state. We use again one of the properties of the
Euclidean space, namely that parallel lines never meet and translate the
fine division of rational numbers from the first simplex onto the infinite
plane (Fig. 2.7).

New position vectors appear on it. They cross the unit simplex in
points, which all lie before the first rational number. They divide the
angle between the first countable rational vector from the primary infinite
division of the unit interval and therefore form a new set of infinite many
points on the number scale. The operation can be repeated ad infinitum.
The first set of the irrational numbers is sufficient for representation of
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Figure 2.5: Three projections of the 5 dimensional plane simplex. A – the
bipyramide, B – one tetrahedron side flattened, C – the whole simplex is
flattened.
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Figure 2.6: Construction of the rational numbers. Vector (1, 1) intersects
the first plane simplex in the point with the coordinate (0.5, 0.5).
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Figure 2.7: Construction of irrational numbers. The vector leading to the
projection of the first rational number a onto the infinite plane simplex has
as the coordinate the irrational number b.
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continuum. Its elements are not be countable because the infinite store of
numbers is exhausted by counting the first crop of the rational numbers.
The uncountable numbers of the second crop are irrational numbers.

We already need such numbers which we are not able to write explicitly.
If we return to the simplex plane and try to measure the length of the vector
leading to the point (0.5, 0.5), or (1, 1), rotated onto the axis, we will not
find it between the rational numbers. Square root from 2 (

√
2) is not

a rational number.

The numbers obtainable by the consecutive divisions of continuum and
eliminating the decimal point of are known as aleph numbers. In the Eu-
clidean space everywhere and always is true that 1 × 1 = 1. Nowhere the
product is an irrational number greater or lesser than 1.
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2.5 Complex Numbers

We have shown that a matrix vector M can be projected onto the unit
vector row JT or column J, and that the quadratic forms MTM and MMT

can be separated into right triangles. This is true for matrix vectors in which
all elements are either positive or negative. If a matrix vector contains
numbers of both signs, its projections are shorter than the matrix vector
itself. Then the hypotenuse of the right triangle (Fig. 1.2), represented by
the trace of the quadratic form, is longer than the outer product, where
the off-diagonal elements form the legs. The off-diagonal elements can be
either positive or negative. For example:

-3 -2 1 Σ
3 9 -6 3 6

-2 -6 4 -2 -4
1 3 -2 1 2
Σ 6 -4 2 4

Trace = 14.

The diagonal vector length (trace) is 14, the off-diagonal vector length
(sum off-diagonal elements) is −10, the outer product length (the projection
on the unit vector is 4, it means that it is shorter than the vector itself.
The negative sum of the off-diagonal elements indicates that their sum must
be subtracted from the trace, not added to it. This changes the construction
of the triangle.

You have probably heard about imaginary numbers i, square roots from
the negative number

√
−1. When they appeared as possible solutions of

quadratic equations, mathematicians feared them as ghosts. Only later
Euler showed, how they can be exorcised by mapping them onto a complex
plane (Fig. 2.8).

Now, if we have a number z in the form

z = (x + iy) or z = r(cos φ + i sinφ) , (2.6)

we can divide it into a right triangle and replace a linear vector by
a plane vector, which is always composed from two elements, one real and
one imaginary. There are specific rules for calculating with complex num-
bers and especially with matrices containing complex numbers.

2.6 Generating Functions

We have shown how a complex is constructed from its simplices. This
technique is used intensively in combinatorics for generating functions. A
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Figure 2.8: Complex numbers. They are composed from the real and imag-
inary parts.
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space is defined by some functional relation, usually a sum or a product,
which argument goes from 0 to ∞. The generating function is evaluated
with a dummy variable, for example t, and coefficients at different powers
of t are calculated.

Because strings xaxb and xbxa are undistinguishable in the commu-
tative process, it was considered as impossible to formulate a generating
function which would exhibit the order of symbols in products (permuta-
tions). Nevertheless, the enumerators are easy to find in the form

n∑
k=0

tk/k! . (2.7)

These enumerators are known as exponential generating functions.
It is possible to make different algebraic operations with generating

functions, For example: to find their sums, products, etc.. The corre-
sponding operations are known as Cauchy and Blissard algebra’s. There
are many conceptual problems connected with the convergence of infinite
series for different arguments. We simplify them by using unit vectors and
the properties of Euclidean space. Only exceptionally, we mention some
deformations of the ideal space.

2.7 Generalized Unit Vectors

By using unit vectors ej we narrowed the possibilities of the calculus. The
simplification has many advantages but they must be paid for. Some for-
mulas in next chapters are true even if ej is not 1 but any number. For
example: (a+b+c)k can be evaluated as (1+2+3)k as well as (2.1+0.1+5)k

depending on actual values of variables. It is true even for geometrical rep-
resentations of variables. It is possible to imagine, as if the space were
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elastic and its lattice could be stretched as required. Each specific case can
be divided into a part which is isomorphic with the ideal case, and into the
specific distortion of the unit vectors.

2.8 Trigonometric Functions

We discuss shortly trigonometric functions, sinus, cosines, tangents and
cotangents. They connect values of angles in the right triangle with ratios
of legs to hypotenuse. If α is the angle of the leg b and the hypotenuse c,
its opposite side being a, the definitions of trigonometric functions are

• sin α = a/c

• cos α = b/c

• tan α = a/b

• cot α = b/a = 1/tan α

• sin α = cos β.

The sides of both angles change their positions.
The formula

sin2α + cos2α = 1

is in fact the Pythagorean sentence in the form:

(a/c)2 + (b/c)2 = (c/c)2 .

2.9 Natural Numbers and Numerals

Two basic definitions of the natural numbers are Peano’s axiomatic one and
the von Neumann’s set model. Both definition are strictly functional, they
do not provide for the relations between the numbers and the numerals
as natural names of the natural numbers and their written form, their
notation.

Peano defined natural numbers by the algorithm which forms from
a number k a greater number by adding one (k + 1). It is a nice ap-
proach and we already exploited it for generating the space where instead
1 new simplex layers were added. Later we derive a generalization of Peano
definition: a natural number is any sum of natural numbers.
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The von Neumann set model generates numbers by counting sets. The
empty set {0} has one element, it generates 1. The set containing {0, 1}
has two elements, it generates 2, and so on.

All languages I know, have numerals k for numbers 0 to ten. Numerals
for 11 – 19 are formed as (10 + k) For example: fourteen. Eleven and
twelve are corrupted because they were used often.

Multiplets of tens are expressed by one numeral formed as (k×ty=ten),
For example: forty. Hundreds and thousands are counted separately, then
only kilomultiplets of thousands (million, . . .) have their own numerals.
Numbers between these pivots are expressed as linear combinations of basic
numerals.

Of course exceptions exist, as mentioned 11 and 12. For example, cor-
ruptions and exceptions of numerals appear to one hundred in Hind́ı. An-
cient Egyptians had specific names and hieroglyphs for decimals.

Number notations had different forms: In the primitive form, one cut on
a stick corresponded to each counted object. Egyptians introduced specific
signs for powers of 10 to 107, but numerals one to nine expressed primitively
by the corresponding number of signs. Phoenicians introduced letters for
1 – 9, 10 – 90 and 100 – 900. It shortened the notation considerably. This
system has been taken over by Hebrews and Greeks. Romans used their
own system. Specific symbols were reduced on I, V, X, L, C, D, and M and
the number of necessary symbols in one number by using a position system
IV = one hand without one, IX = two hands without one. Finally, we have
Indian-Arabic decimal position system.

The Mayan score system should be mentioned with position notation,
where zero with a numeral signified multiplication by 20 (quatre-vingt in
French four twenties) and the Babylonian hexadecimal system (German
Schock, Czech kopa), where powers of three scores were expressed by size
of their symbol (compare dozen – gross – great gross).

Numerals, that is the names of numbers, are generated by a modular
system which is based on our fingers. We count sets by grabbing them with
our hands and it is the natural way we speak and think about numbers
in the decimal system. The definition of the natural numbers should express
this fact. Therefore I propose the following definition:

The natural numbers are generated by a series of modular operations,
comparing two sets, the compared set {n} and the modular set {m}.

The empty set {0} is for obvious reasons unsuitable as the modular set
{m}.

The set {1} as the modular set {m} generates the natural number 0,
only, since

{n} mod {1} ≡ 0 .
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The set {2} generates the natural numbers 0 and 1.
Using great enough modular set {m} we obtain in one modular oper-

ation all natural numbers. But it is inconvenient because we do not have
an unlimited store of simple symbols and numerals for them. Therefore,
a series of modular comparisons must be used which result in a series of
modular identities. The position notation leads to the modular equalities:

{135} mod {10} = 135

{135} mod {4} = 2013

The written form of the number is obtained by the series of consecutive
divisions with the modulo rests

• 135 : 4 = 33 + 3

• 33 : 4 = 8 + 1

• 8 : 4 = 2 + 0

• 2 : 4 = 0 + 2

The resulting number modulo 4 is formed as the position combination
all modular rests written from the first one from the right to left, where
the last rest is written as3 = 2013.

Although the set {1} seems to be a natural base for a number system,
and the objects in sets already exist in such a form, a series of modular
comparisons with 1 gives only a series of zeroes. A division by 1 does not
decrease the digit size of a number and it does not compress the notation.
Therefore, such a number system is impractical. The binary system is the
first applicable.

The modular operation is essentially a mechanical one. In the first step
the line of elements is cut into rows by the given modulo. The last line which
is incomplete (it can be empty) is the result of the modular operation

***** mod **: **
**

Rest * = 1.

One column of the complete rows is transposed into the row and the op-
eration is repeated

3This Semitic writing was accepted from Phoenicians.



2.9. NATURAL NUMBERS AND NUMERALS 35

** mod **: **
Rest 0 = 0.

One full column obtained by the second modular operation is again
compared similarly until all elements are exhausted

* mod **: 0 (the number of complete rows)
Rest * = 1.

The result is the binary notation ***** = 101. The third modular
operation was in fact the division by the second power of 2, the third rest
gives the number of fours in the original set. In the binary notation, they
are determined by their third position from the last digit giving the number
of 1 = 20. A number of a smaller modulo is simultaneously a number of
a greater modulo. The binary number four looks like the decadic number
hundred (4 = 100).

Two natural numbers are equal if they are obtained from the same set
{n}, and comparable if they are determined using the same modular set
{m}.

Compared with the von Neumann set model, where joined sets {{0},
{1}} produce the number 2, here the generating set {2} covers the numbers
0 and 1.

The advantages of the proposed definition are obvious: It connects
the natural numbers with the cardinal numerals by the algorithm which
shows how the names and notations of the natural numbers are formed
from the numerals. It is logical: Numbers which are described in natural
languages by combinations of the cardinal numerals are the natural num-
bers.

Later we will show a generalization of the Peano algorithm.
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Chapter 3

Linear Operators

3.1 Introduction

Vectors are operators which shift a point on another place in a space. In
this chapter special operators will be discussed which act on sets of points
or on sets of vectors as if they were one point or a solid body. Some
of these operations were already mentioned but now they will receive more
systematic treatment. Nevertheless, some important properties of operators
will become clear only later, after graph operators will be introduced and
exploited to obtain practical results.

The operators can be divided into additive, as vector translations are,
and multiplicative, as scalar products are. Another aspect of classification
is possible depending on how many matrices or vectors are affected. The
operation can proceed inside one matrix, or one matrix operator can act
onto another vector or matrix. Remember that a vector row or a vector
column are matrices with just one row or column, respectively.

3.2 Transposing and Transversing

Transposition of matrix vectors was already defined. It changes simply the
row indices i and column indices j of all matrix elements

MT → mT
ij = mji . (3.1)

If MT = M the matrix is symmetrical. This property has important
consequences for other properties of matrices. It is interesting that the
transposition changes the ordering of terms in matrix products:

37
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Figure 3.1: Transposing (A) and transversing (B) of matrices.
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(ABC)T = CTBTAT . (3.2)

A conceptual problem is connected with transpositions. We accepted
the convention that rows of a matrix mean ordering in time, the consecutive-
ness, whereas columns are ordered in space as orthogonal vectors. Trans-
position changes this ordering. But remember a book. All words exist
simultaneously, we are only forced to read them consecutively. The similar
function has time in vector space but it is not conventional time which is
measured by clock. All matrix elements exist simultaneously in all instants.
Otherwise we would need another algebra.

The second operation introduced here, transvesing, is not used in text-
books but we need it to prove simply without calculations some combinato-
rial identities. The transversing changes the ordering of both indices, that
means rows and columns are counted backwards. If transposing rotates ma-
trix elements around the main diagonal m11 −→ mnn, transversing rotates
them around the diagonal (its name will be transversal) m1n −→ mn1 (Fig.
3.1). We look on the matrix’s most distant corner as its starting point.

3.3 Translating and Permuting

We translate a sentence from a language into another, or we translate it as
a block from a place in a file in another place. Similarly we can translate
vectors, or their strings. Now we must find techniques to express different
kinds of translations in an abstract way. Essentially there are two possibil-
ities how such translations can be achieved. The operators can be additive
or multiplicative.

The additive operator is formulated as a difference. We take two states
of a matrix vector, the original M1 and the final M2 and the searched
operator S is just their difference:
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S = M2 −M1 . (3.3)

For example

N1
0 1 0
1 0 0
1 0 0
0 0 1


N2

1 0 0
0 0 1
0 1 0
0 0 1


S

1 −1 0
−1 0 1
−1 1 0
0 0 0


It looks trivial but a special branch of mathematics, graph theory, stud-

ies only these operators and vectors orthogonal to them. According to our
convention, a row shifts one symbol into another. It corresponds to coding
a message, in transposed form it grimaces faces shown on Fig. 1.4.

Each row of an operator S is the difference of two unit vectors ej . The
negative ea is going from the vertex a back to the center and the path
through the space continues by the vector eb to the vertex b. The resulting
simultaneous translation is a vector going directly from the vertex a to the
vertex b without touching the center (Fig. 3.2).

The unit vectors ej are primary vectors, their sums or differences sij are
secondary vectors. Their space is bent in angle 450 to the primary space.
To each sum (i + j) belong two differences, (i− j) and (j − i).

The operator S is a string of such secondary vectors. These vectors
form edges of the plane simplex n1. They do not go from the center to
some point of the space, but they change a vector string into another one
going to the same simplex. Since both vector strings are continuous paths,
the operator that translates one into another lies on a surface in the n di-
mensional space (Fig. 3.3).

The sum of two unit vectors (ej + ei) is orthogonal to the difference
(ej − ei) and the corresponding matrices G = N1 + N2 differ from matri-
ces S only by positive signs relating both unit vector strings. Since each
consecutive element in the string is orthogonal, the G represent vectors
orthogonal to the operators S. Matrices G are linear vectors orthogonal to
the surface of the operator S. They form a secondary vector space, which
is not complete, as we will see in the second part of this book.

The first multiplicative operators allowed to form our space, are de-
termined by properties of a special class of naive matrices N, which have
one unit symbol not only in each row but also in each column. These ma-
trices P are known as the unit permutation matrices. The unit diagonal
matrix I belongs to them. All permutation matrices are square matrices
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Figure 3.2: Representation of arcs and edges as vector sums or differences.
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Figure 3.3: Difference of vector strings A and B forms the surface S.
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and they form groups Sn of permutation matrices with n rows and columns.
When a matrix is multiplied with a permutation matrix from the right, this
operation changes the ordering of columns of the multiplied matrix. For
example

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

1 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1

The first column appears as the second one in the product since the ma-
trix P has 1 in the second column in the first row. The last (zero) column
is similarly shifted on the first place by the last unit element in the first
column.

The multiplication from the left changes the ordering of rows of the
multiplied matrix. For example

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0
1 0 0 0 1 0 0 0

On Fig. 3.4, where the effects of 6 permutation matrices of the group
S3 on a three dimensional plane simplex are depicted, we can see the effect
of such multiplication of columns. The unit diagonal matrix leaves the sim-
plex unchanged, two matrices rotate it along its center and three matrices
change the positions of only two vertices as the triangle were mirrored along
the plane orthogonal to the corresponding edge (or rotated along an axis
lying in the plane). These are symmetry operations. They will be studied
later in more detail.

All permutation matrices with n rows and columns are obtained as
consecutive rotations and form the cycle group Sn. They rotate vectors in
after given number of repeated operations the vectors return back to their
original position.
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Figure 3.4: Symmetry group S3. A – the identity, all elements remain on
their places; B, C, D – reflections, pair of elements interchange their places;
E, F – rotations, three elements exchange their places in cycles.
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Figure 3.5: Additive and multiplicative balancing of numbers.
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3.4 Inverse Elements

When we have a number, say 5, we can define its inverse element again by
two modes, additive and multiplicative. Similar elements can be defined
for vectors.

The inverse operation to addition is subtraction. The number 5 was
obtained from 0 by adding 5 and we restore the original situation by sub-
tracting 5: 5 + (−5) = 0. The inverse additive element of 5 is (−5) and
the inverse additive element of (−5) is 5. We can imagine these numbers
on a balance (Fig. 3.5). Additive inverses are just vector collinear with
the parent vectors, having equal length but opposite direction. They are
formed by changing sign of the vector.

Now we can consider the inverse element for the multiplication opera-
tion:

a× a−1 = a0 = 1 .

When we apply the logarithmic scale we get

log a + log a−1 = log 1 = 0 .

From it we find that a−1 = 1/a. On the number scale, the inverses of
numbers greater than 1 are in the range (0,1), which seems to be unbal-
anced, see Fig. 3.5, but it is balanced on the logarithmic scale.
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It seems that it is easy to find the inverse vectors to vectors-columns
(or vector-rows). They must give the unit scalar product, For example:

3
1/2

1
1/6 1 0 1

1/6
1
0

3 1/2 1 1

But such inverses have one essential disadvantage: They are not unique.
There exist infinite many such inverses which balance each vector-column
(or each vector-row), therefore they are undetermined, For example: an-
other suitable solution is:

3
1/2

1
1/9 2/3 1/3 1

1/9
2/3
1/3

3 1/2 1 1

If we try to find a left (right) inverse for a matrix, its rows must be left
(right) inverses for corresponding columns (rows), but simultaneously zero
vectors for other columns (rows). In the given case the zero vector is again
undetermined:

3
1/2

1
1 0 -3 0
-4/3 2 3 0

1 -4/3
0 2

-3 3
3 1/2 1 0 0

Another difficulty with inverse elements of vectors is, that one can not
find a right inverse to a vector-column (left inverse to a vector-row):

? ? ?
? ? ?
? ? ?

3 1 0 0
1/2 0 1 0

1 0 0 1

3 1/2 0
? ? ? 1 0 0
? ? ? 0 1 0
? ? ? 0 0 1

There were 1/3 as the first inverse element m−1
ij , but it can not be nul-

lified in following rows of the first column. For its nullification we needed
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some nonzero elements in the second and third columns of the left matrix.
For matrix vectors we can, at least sometimes, find matrices which trans-
form all their vector columns into a diagonal matrix. One vector column
does not have any inverse from the right, but their system has. Which
properties a matrix must have for being inversifiable will be shown later.
If a matrix has inverses both from the left and from the right, then both
inverses are identical and there exist only one inverse which action is equal
from both sides. This is the true inverse of the given matrix.

We could search inverses trying haphazardly suitable vectors. Better is
to use some verified algorithms, which will be introduced later.

A matrix having the inverse is regular or nonsingular. Nonsingular
matrices have none zero eigenvalues and eigenvectors and singular matrices
have at least one zero eigenvalue and eigenvector. The eigenvector is a
vector in which all elements are multiplied, if the vector is multiplied by
the given matrix, by the same value which is called eigenvalue. For example

1 1 1
1 -2 0
1 1 -1

Π 0 3 -1
1 -1 0 0 3 1
-1 2 -1 0 -6 0
0 -1 1 0 3 -1

The first column is the zero eigenvector, all values in its column product
are zero, and the second eigenvector eigenvalue is 3, the eigenvalue of the
last eigenvector is 1. There is yet another condition on eigenvectors, see
the next Section.

Some nonsingular matrices are easily recognizable. If a matrix has all
nonzero elements below or over the diagonal and all diagonal elements are
unit elements, then it is nonsingular. The inverse in this case can be simply
found by a technique known as the principle of inclusion and exclusion.
Suppose that k rows were already balanced. In the next row the scalar
products of vector rows with the inverse matrix columns ( multiplication
from the right is supposed) will be unbalanced by some value. We must add
or subtract as many elements to it for obtaining zero off-diagonal elements.
For example (zero symbols are omitted)
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1
-2 1
1 -2 1

1 1
2 1 1
3 2 1 1

.

Here the second row balances are 1× 2− 2× 1 = 0, and 1× 1 = 1. In
detail, the problem of inverse matrices will be treated in Chapt. 16.

3.5 Diagonalization of Matrices

An inverse matrix transforms a matrix M into the diagonal unit matrix I
but there is still another form of diagonalization. This operation demands
a simultaneous action of two matrices from both sides of the matrix which
has to be diagonalized

L(M)R = ∆(M) . (3.4)

∆(M) is a diagonal matrix which has all off-diagonal elements zero. The
matrix in the brackets is the source of the diagonal elements.

The product MM−1 were an example of a matrix diagonalization where
one from diagonalizing matrices is the unit diagonal matrix I. It is required
from diagonalizing matrices that the action of a matrix L from the left
were balanced by the multiplication by a matrix R from the right. The
diagonalization matrices form a frame for the matrix M.

Imagine, that you observe the matrix as between two polarizing filters.
When the filters rotate, the view clears or becomes dark, but at one posi-
tion the filter is transparent. Such transparency of matrices we look for.
Both diagonalizing matrices function as polarizing filters, they decrease
off-diagonal elements and increase diagonal ones. A diagonal matrix is
transparent since diagonal elements are not obscured with the off-diagonal
ones. Recall Fig. 1.6. The obtained diagonal matrix is equivalent to the
matrix of M.

The especially useful effect is obtained, when the product of both diag-
onalizing matrices L and R is the unit diagonal matrix

LR = I , (3.5)

or equivalently when their action does not change the unit diagonal
matrix in their frame:
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LIR = I .

Then, if moreover

L = RT , (3.6)

we say that these matrices are eigenvectors of the given matrix. The
diagonal matrix obtained as the result of such a multiplication is known as
the matrix of eigenvalues. The sum of eigenvalues is equal to the trace of
the diagonalized matrix and the diagonal matrix of eigenvalues is equivalent
to the matrix vector of the diagonalized matrix.

The vector set used for finding of eigenvalues gives the diagonal matrix,
but not the unit matrix I:

1 1 1
1 -2 0
1 1 -1

1 1 1 3 0 0
1 -2 1 0 6 0
1 0 -1 0 0 2

The eigenvectors must be now normalized by dividing with square roots
of 1/3, 1/6 and 1/2, respectively. The normalized eigenvectors are

√
1/3

√
1/6

√
1/2√

1/3
√
−4/6

√
0√

1/3
√

1/6
√
−1/2


The eigenvalues and eigenvectors are not an abstract mathematical con-

struction, but a result of practical experience. Eigenvalues are known from
physical and technical sciences. Eigenvectors are known as factors when
used in the Chapt. 15.

3.6 Matrix Arithmetic

Sums and differences of vectors were already discussed. It is important to
examine arithmetic of matrices more thoroughly, because in textbooks you
can find different restrictions on how matrices can be combined.

Arithmetical operations with matrices are limited usually to matrices
of identical dimensions, having equal number of rows and columns. It is
a too rigid rule. Before a less strict rule will be introduced, we inspect all
possible cases, how matrices can be related, if their indices obtain their true
values, as if two documents are compared and ordered (Fig.3.7).
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Figure 3.6: Matching of matrices according their indices.
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Figure 3.7: Matrix addition and subtraction possibilities.

A B A

B

A + B

The row indices go in each matrix from 1 till m, the column indices
go in each matrix from 1 till n. This is internal counting. Similarly as
Jewish, Christian and Islamic epochs, sets of indices in compared matrices
can be unequal, or one set be the same, or both sets can match. Thus the
rule of matrix arithmetic for addition and subtraction of matrices is simply
addition and subtraction of individual matrix elements according the rule:

if A±B = C, then aij ± bij = cij . (3.7)

The difficulty is based on the question, what to do with unknown matrix
elements. If they are zero, the results can be as on Fig. 3.7. Before
the arithmetical operation is done, one or both matrices are completed to
equal dimensions by adding zero elements in missing rows and columns.
The cases of arithmetical operations in blocks is known as the direct sum
or difference of matrices. If unknown matrix elements are not zero, the
operations lead to errors.

Essentially the same conditions hold for matrix multiplication’s. We
have explained the effect of permutation matrices and scalar products of
vectors. If we multiply a matrix by a vector column from the right, the row
elements v of the matrix multiply all elements of the column. If elements of
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v are smaller than 1, they shorten all elements of this column, if elements of
v are greater than 1, they increase them. Two simultaneous processes occur
at multiplication: the elements of matrix rows are weighted and summed,
or if vector elements are negative, they are subtracted. Multiplication from
the left has the transposed effect. The multiplication of a matrix by a vector
transforms the matrix into the vector. Usually, it is defined otherwise, a
matrix transforms a vector into an another.

A simultaneous multiplication of a matrix by a vector row from the
left and by a vector column from the right, transforms the matrix into one
element. If both vectors are unit vectors JT and J, they just sum the matrix
elements.

It is useful to define also a direct product of two matrices. To distinguish
it from the scalar product, it is written with the multiplication sign ×:

C = A×B .

In the direct product only elements of both matrices having both indices
identical are multiplied:

cij = aijbij .

It is the same as if both matrices were nm dimensional diagonal vectors
and components of their scalar product were found:(

3 2
2 1

)
×

(
1 −3
5 3

)
=

(
3 −6
10 3

)


3 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1




1 0 0 0
0 −3 0 0
0 0 5 0
0 0 0 3

 =


3 0 0 0
0 −6 0 0
0 0 10 0
0 0 0 3


Similarly can be explained the matrix addition. Both matrices are de-

composed into nm dimensional diagonal vectors and the sums found:(
3 2
2 1

)
+

(
1 −3
5 3

)
=

(
4 −1
7 4

)


3 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

 +


1 0 0 0
0 −3 0 0
0 0 5 0
0 0 0 3

 =


4 0 0 0
0 1 0 0
0 0 7 0
0 0 0 4


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3.7 Normalization of matrices

We have discussed the problem of simultaneous action of more vectors or
vectors having another intensity than 1. This can be sometimes solved by
normalization of vectors. The aim of this shaping of vectors and matrices
is to make them comparable. The normalization of vectors is done by
eigenvectors, which must give the unit diagonal matrix I. We introduced
unit vectors ej . A row vector is comparable with the unit vector if it has
the same length. The Euclidean length is the criterion, therefore a vector
is normalized if its elements are divided by the square root of its Euclidean
length. For example, the vector (2, 1, 1, 0)T is normalized by dividing it
with

√
6. The length of its scalar product is then 1. A matrix vector is

normalized by multiplying it by square root diagonal matrices from both
sides. Here we have two possibilities. Either we normalize only diagonal
elements or all rows and columns. For the normalization, the matrix must
be symmetrical.

By normalization of diagonal elements, the matrix vector is oriented in
direction of the unit vector I. This has some consequences on properties of
such normalized matrices.

3.8 Matrix Roots

We defined scalar products and quadratic forms of vectors and matrix vec-
tors. Now we formulate the problem backwards: a matrix M has roots if
it can be decomposed into a product of transposed matrices. For example,
the unit diagonal matrix has many roots:

 1 0 0
0 1 0
0 0 1

  0 1 0
1 0 0
0 0 1

  0 0 1
1 0 0
0 1 0

  1 0 0
0 −1 0
0 0 1


The unit diagonal matrix forms root to itself, since we can not distin-

guish forms

I = I2 = I−1 = ITI = IIT . (3.8)

Its roots are symmetrical permutation matrices and asymmetrical per-
mutation matrices. Moreover there are matrices with negative signs, since
(−1) × (−1) = 1. Our effort to find the natural space is somewhat com-
plicated by this fact but we already introduced complex numbers and so
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we can find the root even for the matrix of the last example1. It is si-
multaneously the fourth root from I3. Then there are eigenvectors to all
nonsingular matrices. Our efforts to generate space by an supervised way
is going out of control.

1The roots of permutation matrices can be compared to quarks in physics: Elementary
particles are split into their components.
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Chapter 4

Partitions

4.1 Preliminary Notes

Partitions of a natural number m into n parts were introduced into mathe-
matics by Euler. The analytical formula for finding the number of partitions
was derived by Ramanudjan and Hardy [13]. Ramanudjan was a mathe-
matical genius from India. He was sure that it was possible to calculate the
number of partitions exactly for any number m. He found the solution in
cooperation with his tutor, the English mathematician Hardy. It is rather
complicated formula derived by higher mathematical techniques. We will
use only simple recursive methods for different relations between partitions.

Steve Weinberg in his lecture [13] about importance of mathematics for
physics mentioned that partitions got importance for theoretical physics,
even if Hardy did not want to study practical problems. But partitions
were used in physics before Hardy by Boltzmann [2]. He used this notion
for splitting m quanta of energy between n particles in connection with his
notion of entropy. He called partitions complexions, considering them to
be orbits in phase space. His idea was forgoten.

A partition splits a number m into n parts which sum is equal to
the number m, say 7 : 3, 2, 1, 1. A partition is an ordered set. Its ob-
jects, parts, are written in a row in decreasing order:

mj−1 ≥ mj ≥ mj+1 .

If we close a string of parts into brackets, we get a n dimensional vector
row p = (3, 2, 1, 1). From a partition vector, another vectors having equiv-
alent structure of elements, for example. r = (1, 2, 1, 3), are obtained by
permuting, simple changing of ordering of vector elements. The partitions

53
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Figure 4.1: Ferrers graphs construction. New boxes are added to free places.
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are thus indispensable for obtaining combinatorial identities, for ordering
points of plane simplices having constant sums of its constituting vectors.

All unit permutations of a vector have the same length. Therefore
different partitions form bases for other vectors composed from the same
parts. Vectors belonging to the same partition of p into three parts are
connected with other points of the three dimensional simplex by circles. In
higher dimensions the circles become spheres and therefore we will call an
ordered partition the partition orbit or simply orbit.

The number of vectors in partitions will be given as n, the size of the
first vector as m1. The bracket (m,n) means all partitions of the number
m into at most n parts. Because we write a partition as a n dimensional
vector we allow zero parts in a partition to fill empty places of the vector. It
is a certain innovation against the tradition which will be very useful. But
it is necessary to distinguish strictly both kinds of partitions, with zeroes
and without them.

4.2 Ferrers Graphs

Ferrers graphs are used in the theory of partitions for many proofs based
simply on their properties. Ferrers graphs are tables (see Fig. 4.1) contain-
ing m objects, each object in its own box. The square boxes are arranged
into columns in nonincreasing order mj ≥ mj+1 with the sum
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Figure 4.2: Truncation of partitions by restrictions of rows and columns.

m

M

N n

n∑
j=1

mj =
∞∑

k=0

nkmk = m . (4.1)

If partitions contain equal parts, it is possible to count them together
using the index k and their number nk.

It is obvious that a Ferrers graph, completed to an quadrangle with zero
positions, is a matrix F which has its unit elements arranged consecutively
in the initial rows and columns.

Introducing Ferrers graphs as matrices, we come necessarily to the no-
tion of restricted partitions. The parts of a partitions can not be greater
than the number of rows of the matrix and the number of parts greater
than the number of its columns.

The interpretation of restrictions is geometrical. The part mmax deter-
mines the side of a cube, n is its dimension, see Fig. 4.2.

A sophistication of the notation distinguishes the partitioned number
M and the number of rows m in the matrix F. The unrestricted number
of partitions p(M) is equal to the number of restricted partitions when
restricting conditions are loose then m ≥M and n ≥M :

p(M)unrestricted = p(M,M,M) . (4.2)

We write here first the number of rows m, then the number of parts n,
here considered as equal to m and at last the sum of unit elements (the
number of filled boxes) M.

An important property of restricted partitions is determined by trans-
posing Ferrers graphs F→ FT:

p(m,n,M) = p(n, m,M) . (4.3)
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The partitions are conjugated. The number of partitions into exactly
n parts with the greatest part m is the same as the number of partitions
into m parts having the greatest part n. This is simple transposing of F.

A Ferrers graph can be subtracted from the matrix containing only
unit elements (defined as JJT, J being the unit column), and the resulting
matrix transversed (Tr), For example:(

1 1
1 1

)
−

(
1 0
0 0

)
=

(
0 1
1 1

)
(

0 1
1 1

)Tr

=
(

1 1
1 0

)
The relation between the number of restricted partitions of two different

numbers is obtained according to the following equation

p(m,n,M) = p(n, m,mn−M) . (4.4)
This identity was derived by an operation very useful for acquiring ele-

ments of partition schemes (see later) and restricted partitions of all kinds.
A restricted partition into exactly n parts, having m as the greatest part,
has (m + n − 1) units bounded by elements forming the first row and col-
umn of the corresponding Ferrers graph (Fig. 4.1). Only (M −m− n + 1)
elements are free for partitions in the restricted frame (m− 1) and (n− 1).
Therefore:

p(m,n,M) = p(m− 1, n− 1,M −m− n + 1) . (4.5)
For example: p(4,3,8) = p(3,2,2) = 2. The corresponding partitions are

4,3,1 and 4,2,2; or 2,0 and 1,1; respectively. This formula can be used for
finding all restricted partitions.

It is rather easy when the difference (M −m − n + 1) is smaller than
the restricting values m and n or at least one from the restricting values.
The row and column sums of partially restricted partitions having the other
constrain constant (shown as an asterics), where either n or m can be 1 till
M are:

p(m, ∗,M) =
M∑

j=1

p(m, j,M) (4.6)

p(∗, n,M) =
M∑
i=1

p(i, n, M) . (4.7)

Before we examine restricted partitions in more detail, tables of unre-
stricted and partially restricted partitions will be introduced.
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4.3 Partition Matrices

Partially restricted partitions can be obtained from unrestricted partitions
by subtracting a row of n units or a column of m units. This gives us
the recursive formula for the number of partitions as a sum of two partitions

p(∗, N, M) = p(∗, N − 1,M − 1) + p(∗, N, M −N − 1) . (4.8)

All partitions into exactly N parts are divided into two sets. In one
set are partitions having in the last column 1, their number is counted by
the term p(∗, N−1,M−1) which is the number of partitions of the number
(M − 1) into exactly (N − 1) parts to which 1 was added on the n th place
and in other set are partitions which have in the last column 2 and more.
They were obtained by adding the unit row JT with n unit elements to
the partitions of (M −N) into N parts. Their number can be found in the
same column column n places above.

A similar formula can be deduced for partitions of M into at most
N parts. These partitions can have zero at least in the last column or they
are partitioned into n parts exactly:

p(∗, ∗ = N,M) = p(∗, ∗ = N − 1,M) + p(∗, ∗ = N,M −N) . (4.9)

The term p(*, *=N-1, M) are partitions of M into (N − 1) parts trans-
formed in partitions into N parts by adding zero in the n-th column,
the term p(*, *=N, M-N) are partitions of (M − 1) into N parts to which
the unit row was added.

To formulate both recursive formulas more precisely, we had to define
an apparently paradoxical partitionat first:

p(0, 0, 0) = 1 .

What it means? A partition of zero into zero number of parts. This
partition represents the empty space of dimension zero. This partition is
justified by its limit. We write n = 00 and find the limit:

lim 00 = lim
x→∞

(1/x)0 = 1/x0 = 1 . (4.10)

We get two following tables of partitions
Table 4.2 is obtained from the Table 4.1 as partial sums of its rows, it

means, by multiplying with the unit triangular matrix TT from the right.
The elements of the matrix TT are

hij = 1 if j ≥ i hij = 0 if j > i . (4.11)
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Table 4.1: Partitions into exactly n parts
n 0 1 2 3 4 5 6 Σ

m=0 1 1
1 1 1
2 1 1 2
3 1 1 1 3
4 1 2 1 1 5
5 1 2 2 1 1 7
6 1 3 3 2 1 1 11

Table 4.2: Partitions into at most n parts
n 0 1 2 3 4 5 6

m=0 1 1 1 1 1 1 1
1 1 1 1 1 1 1
2 1 2 2 2 2 2
3 1 2 3 3 3 3
4 1 3 4 5 5 5
5 1 3 5 6 7 7
6 1 4 7 9 10 11

On the other hand, the Table 4.2 is obtained from the Table 4.1 by
multiplying with a matrix T−T from the right. The inverse elements are

h−1
ii = 1 , h−1

i,i+1 = −1 , hij = 0 , otherwise . (4.12)

Notice, that the elements of the Table 4.2 right of the diagonal remain
constant. They are equal to the row sums of the Table 4.1. Increasing the
number of zeroes does not change the number of partitions.

When we multiply Table 4.1 by the matrix T−T again, we obtain parti-
tions having as the smallest allowed part the number 2. The effect of these
operators can be visualized on the 2 dimensional complex, the operators
shift the border of counted orbits (Fig. 4.3). The operator TT differen-
tiates n dimensional complexes, shifting their border to positive numbers
and cutting lover numbers. Zero forms the natural base border.

4.4 Partitions with Negative Parts

Operations with tables of partitions lead to a thought, what would happen
with partitions outside the positive cone of nonnegative numbers. Thus let
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Figure 4.3: Limiting of partition orbits. The lowest allowed part r shifts
the plane simplex.
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us allow the existence of negative numbers in partitions, too1.
If the number of equal parts nk is written as the vector row under the

vector formed by the number scale, the number of partitions is independent
on shifts of the number scale, see Table 4.3. Partitions, shown in the bottom
part of the table, are always derived by shifting two vectors, one 1 position
up, the other 1 position down. Each partition corresponds to a vector. If
we write them as columns then their scalar product with the number scale,
forming the vector row mT, gives constant sum:

mTp =
∑
k≥r

mknk = m . (4.13)

There is an inconsistency in notation, elements of the vector p are num-
bers of vectors having the same length and the letter n with an index k is
used for them. For values of the number scale the letter m is used with
the common index k which goes from the lowest allowed value of parts r
till the highest possible value. The index k runs to infinity but all too high
values nk are zeroes.

Using different partition vectors and different vectors m we get the
following examples:

(4×−2) + (1× 3) = −5
(3×−1) + (1× 0) + (1× 3) = 0

(3× 0) + (1× 2) + (1× 3) = 5

1The negative parts can be compared in physics with antiparticles. Since an annihi-
lation liberates energy, it does not annihilate it, the energy of the Universe is infinite.
Speculations about existence of antiworlds, formed only by antiparticles balancing our
world, can be formulated as doubt if the Universe is based in the natural cone of the
space.
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Table 4.3: Partitions as vectors
Parameter r
Vector m -2 -1 0 1 2 3 mp = -5

-1 0 1 2 3 4 0
0 1 2 3 4 5 5
1 2 3 4 5 6 10
2 3 4 5 6 7 15

Vector p 4 1
3 1 1
3 1 1
2 2 1
2 1 2
1 3 1
1 2 2

5

(2× 1) + (1× 2) + (2× 3) = 10
(1× 2) + (3× 3) + (1× 4) = 15.

The parameter r shifts the table of partitions, its front rotates around
the zero point. If r were −∞, then p(−∞, 1) = 1 but p(−∞, 2) were
undetermined, because a sum of a finite number with an infinite number is
again infinite. The parameter r will be written to a partition as its upper
index to show that different bases of partitions are differentiating plane
simplices.

4.5 Partitions with Inner Restrictions

Partitions were classified according to the minimal and maximal allowed
values of parts, but there can be restrictions inside the number scale, it can
be prescribed that some values are be forbidden. It is easy to see what this
means:

The plane simplex has holes, some orbits cannot be realized and its
(n−1) dimensional body is thinner than the normal one. It is also possible
to arrange partitions in a plane in nonincreasing order.

It is easy to find the number of partitions in which all parts are even. It
is not possible to form an even partition from an uneven number, therefore:

peven(2n) = punrestricted(n) . (4.14)
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Table 4.4: Odd, even, and mixed partitions
Number of odd partitions Sums

n 1 2 3 4 5 6 7 8 9 Odd Even Mixed p(m)
m=1 1 1 0 0 1

2 1 1 1 0 2
3 1 1 2 0 1 3
4 1 1 2 2 1 5
5 1 1 1 3 0 4 7
6 2 1 1 4 3 4 11
7 1 2 1 1 5 0 10 15
8 2 2 1 1 6 5 11 22
9 1 3 2 1 1 8 0 22 30

A more difficult task is finding the number of partitions in which all
parts are odd. The rejected partitions contain mixed odd and even parts.
The relation between different partitions is etermined as

punrestricted(n) = podd(n) + peven(n) + pmixed(n) . (4.15)

The corresponding lists are given in Table 4.4

Notice how the scarce matrix of odd partitions is made from Table 4.1.
Its elements, except the first one in each column, are shifted down on cross
diagonals. An odd number must be partitioned into an odd number of
odd parts and an even number into even number of odd parts. There-
fore the matrix can be filled only in half. The recurrence is given by two
possibilities how to increase the number m. Either we add odd 1 to odd
partitions of (m−1) with exactly (j−1) parts or we add 2j to odd numbers
of partitions of (m− 2j) with exactly j parts. The relation is expressed as

o(i, j) = p[(i + j)/2, j] . (4.16)

Partitions with all parts unequal are important, because their trans-
posed Ferrers graphs have the greatest part odd, when the number of parts
is odd, and even, when the number of parts is even. For example



62 CHAPTER 4. PARTITIONS

Table 4.5: Partitions with unequal parts
n 1 2 3 4 Σ Difference (nodd − neven)

m=1 1 1 1
2 1 1 1
3 1 1 2 0
4 1 1 2 0
5 1 2 3 -1
6 1 2 1 4 0
7 1 3 1 5 -1
8 1 3 2 6 0
9 1 4 3 8 0

10 1 4 4 1 10 0
11 1 5 5 1 12 0
12 1 5 7 2 15 1

10
9,1
8,2
7,3 7,2,1
6,3 6,3,1

5,4,1
5,3,2

4,3,2,1

The partitions with unequal parts can be tabulated as in Table 4.5.
Notice that the difference of the even and odd columns partitions is mostly
zeroes and only sometimes ±1. The importance of this phenomenon will
be explained later. The number of partitions with unequal parts coincide
with the partitions which all parts are odd.

The differences are due to Franklin blocks with growing minimal parts
and growing number of parts (their transposed notation is used), which are
minimal in that sense that their parts differ by one, the shape of corre-
sponding Ferrers graphs is trapeze:
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Table 4.6: Partitions Differentiated According to Unit Parts
n 0 1 2 3 4 5 6

m=0 1
1 0 1
2 1 0 1
3 1 1 0 1
4 2 1 1 0 1
5 2 2 1 1 0 1
6 4 2 2 1 1 0 1

(1)(
1 1 1
1 1 0

)
 1 1 1 1 1

1 1 1 1 0
1 1 1 0 0



(11)(
1 1 1 1
1 1 1 0

)
 1 1 1 1 1 1

1 1 1 1 1 0
1 1 1 1 0 0



1, 2

5, 7

12, 15

4.6 Differences According to Unit parts

We have arranged restricted partitions according to the number of nonzero
parts in Table 1. It is possible to classify partitions according the number
of vectors in the partition having any value. Using value 1, we get another
kind of partition differences as in Table 4.6.

The elements of the table are:

pi0 = p(i)− p(i− 1), pij = pi−1,j−1 , otherwise . (4.17)

Table 4.6 is obtained from the following Table 4.7 of rows of unrestricted
partitions by multiplying it with the matrix T−1. The zero column of
the Table 4.6 is the difference of two consecutive unrestricted partitions
according to m. To all partitions of p(m − k) were added k ones. The
partitions in the zero column contain only numbers greater than 1. These
partitions can not be formed from lower partitions by adding ones and they
are thus a difference of the partition function according to the number n1.
Since Table 4.6 is composed, it is the product of two matrices, its inverse
is composed, too.
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Table 4.7: Partitions and their Euler inversion
Partition table Euler inversion

j 0 1 2 3 4 5 0 1 2 3 4 5
i=0 1 1

1 1 1 -1 1
2 2 1 1 -1 -1 1
3 3 2 1 1 0 -1 -1 1
4 5 3 2 1 1 0 0 -1 -1 1
5 7 5 3 2 1 1 1 0 0 -1 -1 1

4.7 Euler Inverse of Partitions

If we write successive partitions as column or row vectors as in Table 7,
which elements are

pij = p(i− j + 1) , (4.18)

we find rather easily its inverse matrix which is given in the second part
of the same Table.

The nonzero elements in the first column of the Euler inversion (and
similarly in the next columns which are only shifted down one row) appear
at indices, which can be expressed by the Euler identity concerning the
coefficients of expansion of

(1− t)(1− t2)(1− t3)... = 1 +
∞∑

i=1

(−1)i [t3i2−i)/2 + t3i2+i)/2] . (4.19)

For example: the last row of the partition Table 4.7 is eliminated by
multiplying it with the Euler inversion as:

(7× 1) + (5×−1) + (3×−1) + (2× 0) + (1× 0) + (1× 1) = 0

when i = 1, there is the pair of indexes at t 1, 2 with negative sign;
for i = 2 the pair is 5, 7; for i = 3 the pair is −12,−15 and so on. These
numbers are the distances from the base partition. The inverse matrix
becomes scarcer as p(m) increases, as it was already shown in Franklin
partitions above. All inverse elements are −1, 0, 1. The nonzero elements
of the Euler polynomial are obtained as sums of the product

∞∏
i=1

(1− ti) . (4.20)
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This is verified by multiplying several terms of the infinite product. If
we multiply the Euler polynomial with its inverse function∏

i

= 1∞(1− ti)−1 , (4.21)

we obtain 1. From this relation follows that partitions are generated by
the inverse Euler function which is the generating function of partitions.
Terms ti must be considered as representing unequal parts.

The Euler function has all parts ti different. We have constructed such
partitions in Table 4.5. If the coefficient at ti is obtained as the product
of the even number of (1 − ti) terms then the sign is positive, and if it is
the result of the uneven number of terms then the sign is negative. The
coefficients are determined by the difference of the number of partitions
with odd and even number of unequal parts. This difference can be further
explained according to Franklin using Ferrers graphs.

All parts in p(n) having as at least one part equal to 1 are obtained from
p(n−1). The difference p(n)−p(n−1) is due to some terms of p(n−2). We
must add 2 to each partition of p(n − 2), except all partitions of p(n − 2)
containing 1. These must be either removed or used in transposed form
using transposed Ferrers graphs, since big parts are needed. One from the
pair of conjugate partitions is superfluous. These unused partitions must
be subtracted. For example: for p(8):

6; 16; Formed : 8; 62;
51; 214; 53;
42; 2212; 44; 24;
33; 23; 322;
412; 313; 422;
321;

Leftovers (underlined above):

p(1) + 5: 51; p(3) + 3: 33; 321; 313

are obtained by subtracting the largest part from corresponding parti-
tion. Two must be added to the subtracted part. We get p(8-5) and p(8-7)
as the corrections.

4.8 Other Inverse Functions of Partitions

We already met other tables of partitions which have inverses because they
are in lower triangular form. The inverse to the Table 4.1 is Table 4.8.
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Table 4.8: Inverse matrix to partitions into n parts
n 1 2 3 4 5 6

m=1 1
2 -1 1
3 0 -1 1
4 1 -1 -1 1
5 0 1 -1 -1 1
6 0 1 0 -1 -1 1

Table 4.9: Inverse matrix of unit differences
n 1 2 3 4 5 6

m=1 1
2 0 1
3 -1 0 1
4 -1 -1 0 1
5 -1 -1 -1 0 1
6 0 -1 -1 -1 0 1

The inverse to Table 4.6 is Table 4.9.
Whereas the columns of the Table 4.8 are irregular and elements of each

column must be found separately, columns of the Table 4.9 repeat as they
are only shifted in each column one row down, similarly as the elements
of their parent matrix are. They can be easily found by multiplying the
matrix of the Euler function (Table 4.7) by the matrix T from the left.

4.9 Partition Orbits in m Dimensional Cubes

Restricted partitions have a geometric interpretation: They are orbits of
n dimensional plane complices truncated into cubes with the sides (m− 1)
as on Fig. 3.

We can count orbits even in cubes. It is a tedious task if some spe-
cial techniques are not applied, since their number depends on the size of
the cube. For example: for the 3 dimensional space we get orbits as in
Table 4.10.

The Equation 3 can be applied for cubes. It shows their important
property, they are symmetrical along the main diagonal, going from the
center of the coordinates, the simplex n0 to the most distant vertex of the
cube in which all n coordinates are (m − 1). The diagonal of the cube
is represented on Table 4.10 by k indices. Moreover, a cube is convex,
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Table 4.10: Orbits in 3 dimensional cubes
Edge size 0 1 2 3

m=0 000 000 000 000
1 100 100 100
2 110 200; 110 210; 110
3 111 210; 111 300; 210; 111
4 220; 211 310; 220; 211
5 221 320; 311; 221
6 222 330; 321; 222
7 331; 322
8 332
9 333

therefore

M ≤ mn/2 then p(m,n,M) ≥ p(m,n,M − 1) (4.22)

and if

M ≥ mn/2 then p(m,n,M) ≤ p(m,n,M − 1) . (4.23)

Here we see the importance of restricted partitions. From Table 10,
we find the recurrence, which is given by the fact that in a greater cube
the lesser cube is always present as its base. New orbits which are on its
enlarged sides are added to it. But it is enough to know orbits of one
enlarged side, because the other sides are formed by these orbits. The
enlarged side of a n dimensional cube is a (n − 1) dimensional cube. The
recurrence relation for partitions in cubes is thus

p(m,n,M) = p(m− 1, n,M) + p(m,n− 1,M) . (4.24)

This recurrence will be explained later more thoroughly.

4.10 Generating Functions of Partitions in Cubes

The generating function of partitions is simply the generating function
of the infinite cube in the Hilbert space, which sides have different meshes:

Parts 1 : (1 + t11 + t21 + . . . t∞1 ) (4.25)

Parts 2 : (1 + t12 + t22 + . . . t∞2 ) (4.26)
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and so on till

Parts ∞ : (1 + . . . t1∞) . (4.27)

When the multiplication’s for all parts are made and terms on consec-
utive plane simplices counted, we get:

1 + t11 + [t12 + t21] + [t13 + . . . . (4.28)

The generating function of restricted partitions is obtained by canceling
unwanted (restricted) parts. Sometimes the generating function is formu-
lated in an inverse form. The infinite power series are replaced by the
differences (1− t−1

k ). This is possible if we consider t to be only a dummy
variable. For example, the generating function of the partitions with un-
equal unrepeated parts is given by the product

u(t) =
∞∏

k=1

(1− tk) . (4.29)

The mesh of the partition space is regular, it covers all numbers. The
number of partitions is obtained by recursive techniques. But it is a
very complicated function, if it is expressed in one closed formula, as the
Ramanudjan-Hardy function is. The partitions form a carcass of the space.
We will be interested, how the mesh of partitions is filled into the space
which all axes have unit mesh and which contains also vector strings.



Chapter 5

Lattices of Orbits

5.1 Partition Schemes

Multidimensional plane simplices are complicated objects and it is necessary
to find tools how to analyze them. To draw them is impossible, as it was
mentioned, because their parts are layered in our 3 dimensional world over
themselves.

We already classified orbits in plane simplices according to the number
k of nonzero parts. This number shows the dimensionality of subsimplices,
their vertices, edges, and (k-1) dimensional bodies. Lately we introduced
the number of unit vectors as a tool differentiating the simplex. Now we
arrange partitions as two dimensional tables. These tables will be called
partition schemes.

Analyzing a 7 dimensional plane simplex with m = 7, we can start
with its 3 dimensional subsimplices. We see that they contain points cor-
responding to partitions: 7,0,0; 6,1,0; 5,2,0; 4,3,0; 5,1,1; 4,2,1; 3,3,1; 3,2,2.
The points corresponding to partitions are connected with other points
of the simplex by circles. In higher dimensions the circles become spheres
and this is the reason why we call a partition an orbit. The other points on
each orbit have only different ordering of the same set of the coordinates.

Arranging partitions into tables (Table 5.1), the column classification
is made according to the number of nonzero parts of partitions. Another
classifying criterion is needed for rows. This will be the length of the longest
vector m1. From all partition vectors having the same dimensionality the
longest vector is that one with the longest first vector. It dominates them.
But there can exist longer orbits nearer to the surface of the simplex with
a lesser number of nonzero parts. For example, vector (4,1,1) has equal

69
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Figure 5.1: Lattice of partition orbits (7,7)
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Table 5.1: Partition scheme (7,7)
n 1 2 3 4 5 6 7 Σ

m = 7 1 1
6 1 1
5 1 1 2
4 1 1 1 3
3 2 1 1 4
2 1 1 1 3
1 1 1
Σ 1 3 4 3 2 1 1 11
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length as (3,3,0) but vector (4,1,1,1,1) is shorter than (3,3,2,0,0). Such an
arrangement is on Table 5.1. Orbits with three nonzero parts lie inside the
3 dimensional simplex, with two nonzero parts lie on its edges. Orbits with
four nonzero parts are inside tetrahedrons, it is on a surface in the fourth
dimension. There exist these partitions: 4,1,1,1; 3,2,1,1; 2,2,2,1. Similarly
columns corresponding to higher dimensions are filled.

The rows of partition schemes classify partitions according to the length
of the first and longest vector e1. It can be shown easily that all vec-
tors in higher rows are longer than vectors in lover rows in corresponding
columns. In the worst case it is given by the difference

(x + 1)2 + (x− 1)2 > (2x)2 . (5.1)

A three dimensional plane simplex to be can be considered as a trun-
cated 7 dimensional simplex, and after completing the columns of the Tab.
5.1) by the corresponding partitions, we get a crossection through the 7
dimensional plane. The analysis is not perfect, an element is formed by
two orbits, but nevertheless the scheme gives an insight how such high di-
mensional space looks like. We will study therefore properties of partitions
schemes thoroughly.

The number of nonzero vectors in partitions will be given as n, the size
of the first vector as m. Zeroes will not be written to spare work. The
bracket (m,n) means all partitions of the number m into at most n parts.
Because we write a partition as a vector, we allow zero parts to complete
the partition as before.

5.2 Construction of Partition Schemes

A partition scheme is divided into four blocks. Diagonal blocks repeat
the Table 4.1 (the left upper block), the right lower one is written in the
transposed form for n > m/2. Odd and even schemes behave somewhat
differently, as can be seen on Tables 5.2 and 5.3.

In the left lower block nonzero elements indicated by asterisks * can be
placed only over the line which gives sufficient great product mn to place
all units into the corresponding Ferrers graphs and their sums must agree
not only with row and column sums, but with diagonal sums, as we show
below. This can be used for calculations of their numbers, together with
rules for restricted partitions.

The examples show three important properties of partition schemes:

• Partition schemes are symmetrical according to their transversals, due
to the conjugated partitions obtained by transposing Ferrers graphs.



72 CHAPTER 5. LATTICES OF ORBITS

Table 5.2: Partition scheme m = 13
n 1 2 3 4 5 6 7 8 9 10 11 12 13

m=13 1
12 1
11 1 1
10 1 1 1
9 1 2 1 1
8 1 2 2 1 1
7 1 3 3 2 1 1
6 3 4 3 2 1 1
5 2 4 5 3 2 1 1
4 3 4 4 3 2 1 1
3 2 3 3 2 2 1 1
2 1 1 1 1 1 1
1 1
Σ 1 6 14 18 18 14 11 7 5 3 2 1 1

Table 5.3: Partition scheme m = 14
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m=14 1
13 1
12 1 1
11 1 1 1
10 1 2 1 1
9 1 2 2 1 1
8 1 3 3 2 1 1
7 1 3 4 3 2 1 1
6 3 * * * 2 1 1
5 1 * * * 3 2 1 1
4 3 * * 4 3 2 1 1
3 2 * 3 3 2 2 1 1
2 1 1 1 1 1 1 1
1 1
Σ 1 7 16 23 23 20 15 11 7 5 3 2 1 1
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Table 5.4: Partition scheme (7,7) and its inversion
n 1 2 3 4 5 6 7 1 2 3 4 5 6 7

m = 7 1 1
6 1 1
5 1 1 0 1
4 1 1 1 0 -1 1
3 2 1 1 2 -1 -1 1
2 1 1 1 -2 2 0 -1 1
1 1 0 0 0 0 0 1

• The upper left quarter (transposed lower right quarter) contain ele-
ments of the Table 4.1 of partitions into exactly n parts shifted one
column up.

• The schemes have form of the matrix in the lower diagonal form with
unit diagonal. Therefore, they have inverses. It is easy to find them,
for example for n = 7 (Table 5.4).

The partitions in rows must be balanced by other ones with elements
of inverse columns. The third column includes or excludes 331 and 322
with 3211 and 314; 231 and 2213 with 2× 215, respectively.

5.3 Lattices of Orbits

Partition orbit is a sphere which radius r is determined by the Euclidean
length of the corresponding vector: r = (

∑
p2

j ). Radiuses of some partition
orbits coincide, For example: r(3, 3, 0)2 = r(4, 1, 1)2 = (18). It is thus im-
possible to determine distances between orbits using these radii (Euclidean
distances) since the distance between two different orbits cannot be zero.

We have shown in Sect. 4.4 that one orbit can be obtained from another
by shifting just two vectors, one up and other down on the number scale.
We can imagine that both vectors collide and exchange their values as two
particles of the ideal gas exchange their energy. If we limit the result of such
an exchange to 1 unit, we can consider such two orbits to be the nearest
neighbor orbits. The distance inside this pair is

√
2. We connect them

in the scheme by a line. Some orbits are thus connected with many neighbor
orbits, other have just one neighbor, compare with Fig. 5.1. Orbits (3,3,0)
and (4,1,1) are not nearest neighbors, because they must be transformed
in two steps:
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Table 5.5: Right hand One-unit Neighbors of Partition Orbits
n 1 2 3 4 5 6 Σ

m=2 1 1
3 1 1 2
4 1 2 1 4
5 1 3 2 1 7
6 1 4 4 2 1 12
7 1 5 6 4 2 1 19

D(7-6) 0 1 2 2 1 1 7

(3, 3, 0)↔ ((3, 2, 1)↔ (4, 1, 1)

or

(3, 3, 0)↔ (4, 2, 0)↔ (4, 1, 1) .

Partition schemes are generally not suitable for construction of orbit
lattices, because at m = n > 7 there appear several orbits on some table
places. It is necessary to construct at least 3 dimensional lattices to show
all existing connections. For example:

(5, 2, 1) ↔ (4, 3, 1) ↔ (3, 3, 2)
↘↖ l ↙↗

(4, 2, 2)

Sometimes stronger condition are given on processes going at exchanges,
namely, that each collision must change the number of empty parts, as if
they were information files which can be only joined into one file or one
file separated into two or more files, or as if a part of a file transferred into
an empty file. Here also the nearest neighbor is limited on unifying of just
2 files or splitting a file into two (Fig.5.2). In this case the path between
two orbits must be longer, For example:

(3, 3, 0)↔ (6, 0, 0)↔ (4, 2, 0)↔ (4, 1, 1)

or

(3, 3, 0)↔ (3, 2, 1)↔ (5, 1, 0)↔ (4, 1, 1) .

In a lattice it is possible to count the number of nearest neighbors. If we
investigate the number of one unit neighbors or connecting lines between
columns of partition schemes, we obtain an interesting Table 5.5.
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Figure 5.2: Lattice of file partitions. A file can be split into two new ones
or two files can be combined into one.
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The number of right hand neighbors is the sum of two terms. The
right hand diagonal neighbors exist for all p(m,n − 1). We add 1 to all
these partitions and decrease the largest part. Undetermined remain right
hand neighbors in rows. Their number is equal to the number of partitions
p(m− 2). To each partition p(m− 2, n− 1) are added two units, one in the
n th column, the second in the (n- 1) the column.

The number of right hand neighbors P (n) is the sum of the number
of unrestricted partitions

P (n) =
n−2∑
k=0

p(k) . (5.2)

To find all neighbors, we must add neighbors inside columns. The num-
ber of elements in columns is the number of partitions into exactly n parts
p(m,n), the difference of each column must be decreased by 1 but there
exist additional connections, see Fig. 5.3.

These connections must be counted separately. The resulting numbers
are already known. The construction of partition schemes gives the result
which we know as Table 4.1 read from the diagonal to the left.

The other interpretation of right hand one-unit neighbors of partitions
is the plane complex as on Fig. 5.3. Vectors connect nearest neighbors in
layers.
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Figure 5.3: Neighbor lattices between plane simplices.
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5.4 Diagonal Differences in Lattices

In lattices, we can count orbits on side diagonals going consecutively parallel
to the main diagonal. They count orbits having the form [n − k]k. Their
Ferrers graphs have a L form

x x x x
x
x
x

Side diagonal elements counts partitions which have in this layer smaller
number of units, the other are inside this base.

The corresponding Table is 5.6.
The initial k column values have these analytical forms:

• 1n counts elements in n columns (rows) having the form (n − k)1k,
k = 0 – (n− 1);

• 1(n-3) counts elements in (n - 2) columns (rows) obtained from the
basic partition 2,2 by adding units in the first row and column;
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Table 5.6: Diagonal Sums of Partitions
k 1 2 3 4 5 6 7 8 9 Σ

n= 1 1 1
2 2 2
3 3 3
4 4 1 5
5 5 2 7
6 6 3 2 11
7 7 4 4 15
8 8 5 6 3 22
9 9 6 8 6 1 30

10 10 7 10 9 6 42
11 11 8 12 12 11 2 56
12 12 9 14 15 16 9 2 77
13 13 10 16 18 21 16 7 101
14 14 11 18 21 26 23 18 4 135
15 15 12 20 24 31 30 29 12 3 176

• 2(n-5) counts elements in (n - 2) columns (rows) obtained from the
basic partitions 3,3 and 2,2,2 by adding units in the first row and
column;

• 3(n-7) counts elements in (n - 2) columns (rows) obtained from the
basic partitions 4,4; 3,3,2, and 2,2,2,2 by adding units in the first row
and column;

• 5(n-9) + 1. On this level appears the partition 3,3,3 where elements
start to occupy the third L layer;

• 7(n-11) + 2.

The values in brackets are the numbers for partitions which lie inside
the L frame having (2k − 1) units. At higher diagonal layers appear these
possibilities to add new elements later. Partitions 4, 4, 4 and 3, 3, 3, 3,
for n = 12, are counted in the seventh layer. For n = 13, the layer counts
seven partitions:
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Table 5.7: Binomial Ordering of Partitions
1 2 3 4 5 Σ

(1) 1
(1,1) (2) 2

(1,1,1) (2,1) (3)
(2,2) 4

(1,1,1,1) (2,1,1) (3,1) (4)
(2,2,1) (3,2)
(2,2,2) (3,3) 8

(1,1,1,1,1) (2,1,1,1) (3,1,1) (4,1) (5)
(2,2,1,1) (3,2,1) (4,2)
(2,2,2,1) (3,2,2) (4,3)
(2,2,2,2) (3,3,1) (4,4)

(3,3,2)
(3,3,3) 16

5, 5, 3;
5, 4, 4;

4, 4, 4, 1;
4, 4, 3, 2;
4, 3, 3, 3;

3, 3, 3, 3, 1;
3, 3, 3, 2, 1.

There appears a very interesting property of partition lattices. The side
diagonals being on side diagonals of the Table 5.6 have equal length n, and
the number of partitions p(d) lying on them is equal to

p(d) = 2(n−1) (5.3)

this is true for all complete diagonals in the table, also the seventh di-
agonal sum is completed by the partition (4,4,4,4). It can be conjectured,
that it is a general property of lattices. There are counted partitions which
superposed Ferrers graphs can be situated into isoscele triangular form
(M = N) ending in the transversal which were not ounted before. The
condition is that all Ferrers graphs are superposed from the same start-
ing place, otherwise Ferrers graphs of each partition can fill their isoscele
triangular form.

The partitions can be ordered in the following way (see Table 5.7).
Counting of partitions is changed into a combinatorial problem of finding

of all ordered combinations of (k− 1) numbers with the greatest part equal



5.5. GENERALIZED LATTICES 79

Figure 5.4: Nearest neighbors in 00111 lattice.
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to k. The partitions are formed by a fixed part which is equal to the
number of the column and starts in the corresponding row. To this fixed
part are added two movable parts from the previous partitions, the whole
upper predecessor and the movable part of the left upper predecessor. The
resulting counts are the binomial numbers.

5.5 Generalized Lattices

The notion of lattices can be used also for possible transformations of points
having specific properties among themselves, For example: between all 10
permutations of a 5 tuple composed from 3 symbols of one kind and 2
symbols of another kind. When the neighbors differ only by one exchange
of the position of only anyone pair of two kinds symbols we obtain lattice
as on Fig.5.4. Each from three unit symbols has two possibilities to change
0 into 1. Rearrange these ten points as a simple triangle. The simultaneous
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Figure 5.5: Petersen graph. Adjacent vertices are in distances 4.
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exchange of two pairs (or two consecutive changes of one pair give a pattern
as on Fig.5.5, known as the Pettersen graph.

Lattices are formed by vertices of n dimensional cubes. The nearest
vertices differ only by one coordinate. The lattices of the 3 dimensional
cube is on Fig. 5.6. Compare lines of the graphs with a real 3 dimensional
cube and try to imagine the 4 dimensional cube (Fig. 5.7).

A classical example of relation lattices is Aristotle’s attribution of four
properties: warm, cold, dry, and humid to four elements: fire, air, water
and earth, respectively. It can be arranged in a form

air humid water

warm 0 cold

fire dry earth .
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Figure 5.6: Lattice of the three dimensional unit cube.
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Figure 5.7: Four dimensional cube projection. One 3 dimensional cube is
twisted 450.
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The elements have always only two properties. The properties adja-
cent vertically and horizontally exclude themselves. Something can not be
simultaneously warm and cold, or humid and dry1.

1More precisely, it is necessary to draw a borderline (point zero) between these prop-
erties. Depending on its saturation, water vapor can be dry as well as wet.



Chapter 6

Erasthothenes Sieve and
its Moebius Inversion

6.1 Divisors of m and Their Matrix

In this chapter an important notion will be introduced, the divisor. A
number k is a divisor of the number m if m ≡ 0 mod k, it means m
is identical with 0 when divided with k. Or otherwise, m = kn, number
m splits into n equal parts k. It follows that each number has at least
two divisors, the number 1, which leaves the number unchanged and the
number itself, when the division gives 1 as the result. If only these two
divisors exist, such a number is called the prime.

It is possible to find prime numbers p by the Erasthothenes sieve. This
algorithm works like a sieve. A number put on the first column of the
sieve falls through its columns. If it gets the diagonal without meeting a
divisor, it is a prime. The divisors j represented by units in divisor rows of
corresponding columns work as meshes in a sieve. Thus the Erasthothenes
sieve is a matrix which elements are

eij = 1 ,

if the number j is the divisor of the number i, and

eij = 0 ,

otherwise. On Table 6.1 is the Erasthothenes sieve with its Moebius inverse
function.

The divisors form a regular pattern, they are in all rows i ≡ 0 mod j.
The prime numbers become scarcer, as the matrix grows, but it is always

83
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Table 6.1: Erasthothenes sieve and its Moebius inversion
Erasthothenes sieve Moebius inversion

j 1 2 3 4 5 6 7 1 2 3 4 5 6 7
i=1 1 1

2 1 1 -1 1
3 1 0 1 -1 0 1
4 1 1 0 1 0 -1 0 1
5 1 0 0 0 1 -1 0 0 0 1
6 1 1 1 0 0 1 1 -1 -1 0 0 1
7 1 0 0 0 0 0 1 -1 0 0 0 0 0 1

possible to find another prime number p(n + 1) as the product of all n
previous prime numbers increased by 1.

p(n + 1) =
n∏

j=1

pj + 1 . (6.1)

This equation does not generate all prime numbers. Between p(2) = 3
and p(3) = 7 is p = 5.

The row sums of the Erasthothenes sieve (EJ) are the numbers of divi-
sors. They appear on the diagonal of the quadratic form EET of the matrix
E. They are known as the Euler function σ0 (n). This function is related
with logarithms of divisors. If we use as the base of logarithms the number
n itself, we get (except n = 1)

σ0(n) = 2
∑

lg(d|n) (6.2)

or for any base of logarithms

σ0(n) = 2
∑

lg(d|n)/ lg a . (6.3)

The divisors appear in pairs, didj = n, except the lone divisor which is
the square root of n. The sum of logarithms with the base n is thus only
a half of the number of divisors of the number n. The sum of divisors values
σ1(n) sometimes gives twice the number itself as 2 × 6 = 6 + 3 + 2 + 1 or
2 × 28 = 28 + 14 + 7 + 4 + 2 + 1. Such numbers are known as the perfect
numbers.



6.2. MOEBIUS INVERSION OF THE ERASTHOTHENES SIEVE 85

6.2 Moebius Inversion of the Erasthothenes
Sieve

In Table 6.1 the Moebius function was shown as the inverse matrix E−1.
The elements of its first column are

• e−1
i1 = 1, ifi = 1 , or in the case of the product of an even number of

prime numbers;

• e−1
i1 = −1, if i is a prime number or a product of an odd number of

prime numbers, and

• e−1
i1 = 0, if i is product of higher powers of prime numbers as 4 = 22

in the Table 6.1.

These elements appear in other columns on places, where the ratio i/j is
a whole number, otherwise there are zeroes. The unit elements are scarcer
in higher columns.

The Moebius inversion is the classical example of the combinatorial in-
clusion and exclusion principle. Some objects are counted in their combina-
tions twice or more times and then these overbalanced parts are subtracted
in other combinations for obtaining the true value. We formulated this
principle by a sophisticated technique of matrix products. This technique
can be applied to all matrices which have the unit diagonal and all nonzero
elements under or on the diagonal. The unit matrix I is subtracted from
such a matrix and then the difference is multiplied with itself till all nonzero
elements disappear (at most n times). For example

(E− I)
0 0 0 0
1 0 0 0
1 0 0 0
1 1 0 0


(E− I)2

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


(E− I)3

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Developing the product (E − I)k when it is equal 0, the unit diagonal

matrix is expressed as

n∑
i=1

(−1)i

(
n

k

)
Ei = I . (6.4)

Multiplying both sides by E−1 and eliminating E−1E = I we get
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E−1 =
n∑

i=1

(−1)i−1

(
n

k

)
Ei−1 . (6.5)

Objects
(
n
k

)
looking as one column matrices in both equations are known

as binomial coefficients. They count all possibilities how to choose k objects
from n objects. The inverse matrix E−1 is a sum of positive and negative
multiples of positive powers Ek. It sounds quite occult.

6.3 Divisor Functions

The number of divisors σ0(n) and the sum of divisors values are rather
irregular functions. Their sequence and consecutive sums of σ0(n) are

n 1 2 3 4 5 6 7 8 9 10 11
σ0(n) 1 2 2 3 2 4 2 4 3 4 2
σ1(n) 1 3 4 7 6 12 8 15 13 16 12∑

[σ0(n)] 1 3 5 8 10 14 16 20 23 27 29

The sums
∑

[σ0(n)] are obtained as traces of corresponding matrix prod-
ucts of growing Erasthothenes sieves EET, or simply by counting elements
of the matrix E:

∑
[σ0(n)] =

n∑
j=1

[n/j] , (6.6)

where [n/j] means the whole part of the given ratio. Therefore the sum∑
[σ0(n)] has as a limit the product n

∑n
j=1 n/j. For example∑

[σ0(3)] = 5 < 3(1 + 1/2 + 1/3) = 11/2 .

If we arrange the elements of traces ETE (this is the second quadratic
form of the Erasthothenes sieve), or by counting consecutively elements in
columns of the matrix E into a table and find its inverse, than its row sums
give the values of the Moebius function (Table 6.2).

The row elements of the previous matrix M are JTE, thus the Moebius
function is M−1J.

A still more important function is the sum of the divisor values. It
can be expressed as the matrix product having in the frame E(∗)ET the
diagonal matrix of indices ∆(j). E∆(j) is the matrix of divisor values.
The sums of divisor values σ1(n) are the diagonal elements of the matrix
E∆(j)ET:
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Table 6.2: Erasthothenes sieve diagonal values and their Moebius inver-
sions.

Diagonal values Σ Moebius inversion Σ
j 1 2 3 4 5 6 7 1 2 3 4 5 6 7

i=1 1 1 1 1
2 2 1 3 -2 1 -1
3 3 1 1 5 -1 -1 1 -1
4 4 2 1 1 8 1 -1 -1 1 0
5 5 2 1 1 1 10 -1 0 0 -1 1 -1
6 6 3 2 1 1 1 14 2 0 -1 0 -1 1 1
7 7 3 2 1 1 1 1 16 -1 0 0 0 0 -1 1 -1

E∆(j)
1
1 2
1 0 3
1 2 0 4


E∆(j)ET


1 1 1 1
1 3 1 3
1 1 4 1
1 3 1 7


The number of divisors j which also gives ratios n/d is obtained as

another matrix product:

∆(j)E[∆(j)]−1 (6.7)

The rows of E are multiplied by the corresponding index i and the
columns are divided by the corresponding index j. The elements of the
matrix product are eij = i/j, if i ≡ 0 mod j, and eij = 0 otherwise.

1
2 1
3 0 1
4 2 0 1
5 0 0 0 1

 .

If we multiply this matrix by the inverse E−1, we get the matrix which
elements count the numbers of those numbers between 1 and n that are
divided by the given divisor, provided, that they were not already divided
by a greater divisor. Thus the row sums of the table are always n.

For example: 1 in the sixth row divides 1,5; 2 divides 2,4; 3 and 6 divide
themselves and 4 and 5 are not divisors.

This inverse function has again the table form (see Table 6.4).
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Table 6.3: Numbers of numbers divided by the given divisors
n 1 2 3 4 5 6 7 8 Σ

m=1 1 1
2 1 1 2
3 2 0 1 3
4 2 1 0 1 4
5 4 0 0 0 1 5
6 2 2 1 0 0 1 6
7 6 0 0 0 0 0 1 7
8 4 2 0 1 0 0 0 1 8

Table 6.4: Inverse function of numbers of numbers
n 1 2 3 4 5 6 7 8 Σ

m=1 1 1
2 -1 1 0
3 -2 0 1 -1
4 -1 -1 0 1 -1
5 -4 0 0 0 1 -3
6 2 -2 -1 0 0 1 0
7 -6 0 0 0 0 0 1 -5
8 -1 -1 0 -1 0 0 0 1 -2
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It is necessary to find elements d−1
i1 of the first column, since in further

columns are only the elements of the first column diluted by zeroes as
in the basic matrix. It is obvious that the elements (1− p) must appear in
prime rows, there are zeroes in the following columns. Values for i = 4, 6
show, that powers of prime numbers are just products of these elements.
Value 2 in the sixth row is interpreted as (−1)× (−2), the product of two
divisors. To check it, we try to find the solution for 30, the product of three
prime divisors

Divisors 1 2 3 5 6 10 15 30 Σ
Divided numbers di1 8 8 4 2 4 2 1 1 30
d−1

i1 1 -1 -2 -4 2 4 8 -8
di1d

−1
i1 8 -8 -8 -8 8 8 8 -8 0

where d−1
30 = −8 = −1×−2×−4, or −4× 2, if we express 30 as 5× 6.

Another division function is the function ϕ(n). This function counts
the numbers, which are not divisible by the divisors of n except 1. They
are

n 1 2 3 4 5 6 7
ϕ(n) 1 1 2 2 4 2 6
Counted numbers 1; 1; 1,2; 1,3; 1 – 4; 1,5; 1 – 6

The values ϕ(n) appeared as elements in the first column Table 6.4. It
was shown that ϕ(n) are easily found as the product:

ϕ(n) = n
n∏

p=2

(1− 1/p) , (6.8)

where p are prime numbers that are divisors of n. The ratio n/p is
split from the number n by each inverse of the prime number 1/p. The
sum counts all subtracted parts from the total n. The function ϕ(n) of the
product of two numbers is simply the product of the values for each number

ϕ(nm) = ϕ(n)ϕ(m) . (6.9)

The following relation is very interesting∑
nd|n

ϕ(d) = n . (6.10)

For example: for n = 6: ϕ(1) + ϕ(2) + ϕ(3) + ϕ(6) = 1 + 1 + 2 + 2 = 6.
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6.4 Relation Between Divisors and Partitions

The reason why the Erasthothenes sieve was introduced, is its involvement
in counting of partitions. In each unrestricted plane simplex are p(m)
partitions of the number m. The sum of their parts is m × p(m). This
product is obtained from the Erasthothenes sieve, if this is multiplied from
the left by the diagonal matrix ∆ of unrestricted partitions written in the
decreasing order: p(i) = p(m−i) and from the right by the diagonal matrix
∆ of indices i. For example


5

3
2

1
1




1
1 1
1 0 1
1 1 0 1
1 0 0 0 1




1
2

3
4

5



=


5
3 6
2 0 6
1 2 0 4
1 0 0 0 5


12 8 6 4 5

The sum of elements of the product is 35 = 5 × 7. The partition p(5)
was obtained from values of parts added to lower simplices which were
counted. Ones are counted in the first column. They were added to p(m−
1) partitions. But this set contains simultaneously all ones from lower
partitions enlarged by such a way in lower steps, till one representing p(1).
In the second column two is added to 3 partitions of 3. One of them,
(2,1) already contained one 2, when this partition was obtained from p(1).
Similarly, other numbers are counted in following columns.

This product of 3 matrices can be inserted into the frame JT(∗)J which
sums up the elements of the framed matrix. The insert in the frame is:

JT∆[p(m− i)]E × {∆(i)J (6.11)

Consecutive vectors form matrices in lower and upper triangular form
and products of 3 matrices are replaced by a product of only 2 matrices:
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1 1 1 1 1
2 2 2 2

3 3 3
4 4

5
1 1 1 1 1 1
2 1 2 4 4 4 4
4 1 1 4 6 9 9 9
7 3 1 1 7 13 16 20 20

12 4 2 1 1 12 20 26 30 35

The left matrix counts the numbers nk in the partitions, the right matrix
weights them as mk.

The diagonal elements mp(m) can be decomposed into another pairs
of vectors and so another product of 2 matrices exists having identical
diagonal. The left matrix is the matrix of successive partitions (Table 4.8),
the right matrix is the matrix of sums of divisors σ1(i), written similarly as
the matrix of successive partitions, but in upper triangular form, in columns

S : sij = σ1(i) if i ≤ j, sij = 0, otherwise . (6.12)

1 1 1 1 1
3 3 3 3

4 4 4
7 7

6
1 1 1 1 1 1
1 1 1 4 4 4 4
2 1 1 2 5 9 9 9
3 2 1 1 3 9 13 20 20
5 3 2 1 1 5 14 22 29 35

.

The numbers mp(m) appear again on the diagonal of the product. This
elementary relations can be expressed in a formal abstract form. We write
the generating function of unrestricted partitions

P (x) =
∞∑

m=1

p(m) qm (6.13)

and find its derivation
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Table 6.5: Numbers of parts in partitions
n 0 1 2 3 4 5 6 Σ

m=0 1 1
1 0 1 1
2 1 2 1 4
3 3 4 1 1 9
4 8 7 3 1 1 20
5 15 12 4 2 1 1 35
6 31 19 8 4 2 1 1 66

dP (x) =
∞∑

m=1

mp(m) qm−1 . (6.14)

The partition function P (x) is represented in the rows of the left matrix.
The difference dP (x) appears on the diagonal of the product. When we find
the ratio of both matrices the result can be formulated as

d lg[P (x)] = dP (x)/P (x) =
∞∑

m=1

ϕ(m)qm . (6.15)

The ratio dP (x)/P (x) is the difference of the logarithm of the function
P (x). Divisor sums are thus the differences of the logarithmic measure
of the generating function of partitions. It relates divisor and partition
functions and it was used for finding of the asymptotic behavior of the
p(m) function.

6.5 Zeroes in partitions

If the sum of values of all parts of the plane simplex is mp(m), we can
find also the number of zeroes in all parts n0(m). These numbers form the
first column in the table which counts the number of all parts classified
according to their values (Table 6.2)

Matrix elements of the Table 6.2, except its first column, are obtained
as the partial result of the matrix product used for finding the sum of values
of parts in partitions exploiting equation 5.3. They are elements of products
of two matrices ∆[p(m− i)]E. The first column is in its turn again a matrix
product of the matrix of partitions into exactly n parts (Table 4.2) and the
matrix of positive (j − i) elements, and the unit vector column J, which
sums the row values of the intermediate product. It is easy to explain this
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relation: In each partition, when m splits into exactly n parts, there are
(m−n) zeroes. For example: for m = 4 : 8 = 3×1+2×2+1×1+0×1. The
number of zeroes is balanced by other numbers. This leads to the simple
form of some elements of inverse matrix

m−1
i0 = (1− i) .
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Chapter 7

Groups of Cyclic
Permutations

7.1 Notion of Cyclic Permutations

Lets suppose that we have n objects labeled by an index, arranged in natural
order, and we change their positions. It is convenient to describe this
operation of permutation in two lines, the first one corresponding to the
starting position, the second one giving the final position. E.g.

• Start 0: 1 2 3 4 5 6

• Step 1: 2 3 1 5 4 6

The first three objects are permuted in a cycle of length 3, the first
object appeared after the third one, next two objects form a cycle of length
2, they exchanged their places, and the last object remained in its place.
By repeating the procedure we obtain permutations 2 to 6:

• Step 2: 3 1 2 4 5 6

• Step 3: 1 2 3 5 4 6

• Step 4: 2 3 1 4 5 6

• Step 5: 3 1 2 5 4 6

• Step 6: 1 2 3 4 5 6

• Step 7: 2 3 1 5 4 6

95
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The string returns in the 6 th step into the initial order and a new cycle
starts in the 7 th step.

The index labeling objects is the column index j. The position in the per-
mutation is labeled by the row index i at the element 1ij . Thus permuta-
tions are isomorphic with matrices. The starting position, corresponding
to the diagonal unit matrix I, can be considered as the zero order. The last
element remained in all steps in its original position and the first three ele-
ments returned to their positions twice and two elements made three turns.
The length of the total cycle is the product of individual cycles:3×2×1 = 6.
The elements belonging to the same cycles are usually written in brackets:
(2, 3, 1)(5, 4)(6).

The number of elements n splits into k cycles, k going from 1 to n.
The cycle structure is described by partition orbits.

We could map the cycle changes by the additive operators S having
−1ij for the leaving object j, 1ij for the becoming object j, zero rows for
unmoved objects (+1 and -1 appear on the same place). This operator
was introduced in Chapt. 3 and in more detail will be studied in Chapt.
12. Now we will study the multiplication operators P. Their matrices,
unit permutation matrices, are naive, they have in each row only one unit
element and moreover they have only one unit element in each column.
The matrices P are simultaneously notations of permutations, since their
row unit elements pij correspond to indexes (or equivalently to alphabetical
symbols) j.

Using multiplicative operators, permutations are the results of multi-
plication’s of the row vectors by the unit permutation matrix P from the
right and column vectors by the multiplication with the unit permutation
matrix P from the left. Different steps can be written as powers of these
matrices Pi. The unit diagonal matrix is I = P0 .

The last but one power of any permutation matrix is its inverse (Fig.
7.1). It is rather easy to find this matrix, because it is identical with the
transposed matrix PT:

Pn−1 = P−1 = PT . (7.1)

The set of all permutation matrices P, with n rows and n columns, rep-
resents all possible permutations. A special class of permutation matrices
are the symmetrical ones. For them the following relations are true:

P = P−1 = PT . (7.2)

Such matrices have all unit elements either on the diagonal, or
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Figure 7.1: Cycle of permutation matrices. Positive powers become nega-
tive ones.
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otherwise they form cycles of the length 2. These permutations are
known as convolutions. We will show a surprisingly simple technique for
their generating.

7.2 Young Tables

We will reconstruct the sequence of the Ferrers graphs, finding all ways they
can be formed from lower graphs by adding one new element. To do this
the order, each box was added to a smaller Ferrers graph enlarging it into
the larger Ferrers graph, is indexed. Equivalent boxes will have different
indices, because they can be reached in different steps. Such labeled Ferrers
graphs are known as Young tables (Fig. 7.2).

Young tables are connected with permutations by the following algo-
rithm:

• 1 If a greater index follows a lesser one, it is written in the next free
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column of the Young table.

• 2. If a lesser index follows a greater one in a permutation, it replaces
it in its column of the Young table and shifts it down to the next row.
For example:

3412 → 34 → 14 → 12
3 34

The third element 1 jumps in the first column and shifts 3 down, then
2 shifts 4 down. Or:

4231 → 4 → 2 → 2 3 → 1 3 .
4 4 2

4

One property of the algorithm seems to be disadvantageous but this
property only reproduces relations between permutations. It allows an
asymmetric permutation matrix to be decomposed differently according to
its rows and columns. But both Young tables belong to the same type of
Ferrers graphs. For example:

Σ
0 0 0 1 0 0 0 4
0 0 0 0 0 1 0 6
0 1 0 0 0 0 0 2
0 0 0 0 1 0 0 5
0 0 0 0 0 0 1 7
1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 3
6 3 7 1 4 2 5

Columns
1 2 5
3 4
6 7

Rows
1 3 7
2 5
4 6

Remember that convolutions have symmetrical matrices and that then
column and row readings are identical. A permutation matrix or a Young
table is always a product of two permutation matrices or Young tables
of the same type. They can be identical in case of convolutions, but mostly
they differ in rows and columns, as



7.3. THE NUMBER OF CONVOLUTIONS 99

1 0 0
0 0 1
0 1 0

0 1 0 0 0 1
1 0 0 1 0 0
0 0 1 0 1 0

(a, c, b)× (b, a, c) = (c, a, b)

A relation there appears between the number of partitions orbits p(n),
the number of Young tables Y (n), and the number of permutation matrices
P (n).

The Young tables are formed from Ferrers graphs by a recursive algo-
rithm. If we use for the number of Young tables corresponding to a Ferrers
graph with an index k the notation y(k), then y0(k) = 1, and we have the
relation between the number of partitions p(n) and the number of Young
tables Y (n). Similarly, if we square all y(k), we obtain all permutations of
n elements. Therefore

∑
y0(k) = p(n) ;

∑
y(k) = Y (n) ;

∑
y2(k) = P (n) = n! (7.3)

Here n! means n factorial. It is a product of successive natural numbers:

n∏
k=1

k = n! . (7.4)

We will explain this function later, when we will look for other formu-
las determining the number of permutations. Before then we will study
convolutions. Here an example is given how equation (7.4) works:

Partition: 5 4,1 3,2 3, 12 221 2, 13 15 Σ
y0(k) 1 1 1 1 1 1 1 7
y1(k) 1 4 5 6 5 4 1 26
y2(k) 1 16 25 36 25 16 1 120

7.3 The Number of Convolutions

The number of convolutions is the number of all possible connections in a tele-
phone network. We classify all convolutions according to the number of el-
ements which remain on their places, that means unconnected. It is easy
to fill in the following table
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Table 7.1: Distribution of convolutions
On diagonal 0 1 2 3 4 5 6 Σ

n=0 1 1
1 0 1 1
2 1 0 1 2
3 0 3 0 1 4
4 3 0 6 0 1 10
5 0 15 0 10 0 1 26
6 15 0 45 0 15 0 1 76

The recurrence of the table elements is

y00 = 1 ; yij = (i− 1)yi−2,j + yi−1,j−1 . (7.5)

The inverse table has the same elements, only the signs of elements
which indices i differ from indices j by the value (4k + 2) are negative.
Their recurrence is

y−1
00 = 1 ; y−1

ij = (1− i)yi−2,j + yi−1,j−1 . (7.6)

All convolution matrices are obtained in two ways. Either by adding
1 to the last place of diagonal. These convolutions are counted by the
term yi−1,j−1. Or the unit element is added in the last row off-diagonal
position. It is inserted between existing columns into a new one. Then an
unit element must simultaneously added in the last column into a new row,
i = j. There are (n − 1) off diagonal places where it is possible to form a
new convoluted pair to j already existing pairs in a matrix of convolutions.
This new pair occupies two rows and columns and therefore it is formed in
matrices with (n − 2) rows and columns. It does not increase the number
of elements on the diagonal, so it increases the number of elements in the
same column.

A similar recurrence is applied to the row sums counting the total num-
ber of convolutions

Y (n) = (n− 1)Y (n− 2) + Y (n− 1) . (7.7)

It is possible to determine the elements of the Table 7.1 directly, because
they are calculated according to the formula

yij = i!/j!t!2t , (7.8)
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where t = (i − j)/2 is the number of cycles of length 2. This formula
contains 3 factorials. The term 2t equilibrates the string of t divisors. No-
tice, that equation (7.3) counts together Young tables of different formats,
they must have only the same number of columns. Still another expression
of the number of convolutions is a formal binomial equation

Y (n) = (1 + yi)a , (7.9)

where the terms in the first column of the Table 7.1 yk0 are considered
as powers of yk when the sum (1+ y) is multiplied with itself. For example

(1 + y)6 = 1× 1 + 6× 0 + 15× 1 + 20× 0 + 15× 3 + 6× 0 + 1× 15 = 76 .

The convolutions counted by these terms have no elements on the main
diagonal and are obtained by multiplying odd numbers. They are odd
factorials, since they are obtained by consecutive multiplication’s of odd
numbers: 1× 3× 5× 7× 9× 11× 13× 15× and so on.

7.4 Factorial and Gamma Function

The number of all permutation matrices P (n) is determined easily by count-
ing possibilities of arrangements of the units in rows and columns in a per-
mutation matrix. In the first row there are n possibilities, in the second
row one column is blocked by the element of the first row. The second row
element can not be in the same column. The possibilities decrease regu-
larly. In each row (n− i) remaining places are free. These possibilities are
independent and therefore they multiply for all rows. We get the factorial

P (n) = n× (n− 1)× . . .× 2× 1 =
n∏

j=1

j = n! (7.10)

The factorial function has an interesting property. If p is a prime num-
ber, then (p− 1)! mod p = (p− 1) and simultaneously (p− 2)! mod p = 1.
The factorial is divisible by all its factors, say b. If the modular value were
different, say a, then this value could be chosen in such a way that a+b = p.
The factorial were divisible by the prime number greater than its factors,
which is impossible. For example: p = 7, 720 mod 7 ≡ 6; 120 mod 7 ≡ 1.

The factorial function is defined for natural numbers, zero including.
We complete its definition by the term 0! = 1. We already did something
similar, defining the empty partition.

Combinatorial functions are defined for counting objects, which must
be whole. There can emerge questions, what is a object, or an animal,
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or a man, when they start to correspond to their definitions and when
they are something different. In mathematics, such small differences can
be expressed by numbers. In higher mathematics the factorial function is
only the special case of the gamma function, defined by Euler as

Γ(z + 1) = zΓ(z) (7.11)

When Γ(1) = 1, then

Γ(2) = 1Γ(1) = 1,

Γ(3) = 2Γ(1) = 2,

and

Γ(4) = 3Γ(3) = 6 .

Therefore

Γ(n + 1) = n! .

Drawing the graph of the gamma function, we can interpolate it for any
real number. The gamma function is defined by the integral1.

Γ(z + 1) =
∫ ∞

0

xze−xdx . (7.12)

We will not deal with problems connected with evaluation of such inte-
grals, and we introduce the function e in the next chapter. Now we accept
only the result giving for

Γ(1/2) =
√

π. (7.13)

From it, other n/2 values of the gamma function are calculated easily
which fits excellently in holes between factorials to plot one smooth function
(Fig. 7.3).

When we interpolate the gamma function to negative values:

Γ(1) = 0Γ(0)

we get

Γ(0) = Γ(1)/0 =∞
1e in the integral is the base of the natural logarithms. Logarithms can be decadic

lg a, binary a, natural ln a, or with any base b logb a.
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Figure 7.3: Plot of the function Gamma.
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Γ(0) = (−1)Γ(−1)

Γ(−1) = Γ(0)/(−1) = −∞ .

The gamma function oscillates for consecutive negative numbers from
+∞ to −∞, and than it starts with an opposite sign again in infinity. The
functional relation is no more solid but it behaves as the see at storm under
clouds. The world of mathematical functions is not symmetrical to the
sign inversion, similarly as our physical world, where antiparticles are rare
events which annihilate immediately.

The Euler gamma function can be used for finding approximations
of the factorial function for large n. The Stirling approximation is

n! = nne−n
√

2πn . (7.14)

7.5 Index of cyclic permutations

After this transgression, we now return to permutations finding formulas to
determine the numbers of each cycle structure. The cycle structure forms
an orbit of permutations and the sum over all orbits gives the factorial.
A partition orbit counts all permutations of a cycle sk of the length k. If
there are more cycles of equal length, their lengths sk multiply. This gives
the terms st

kk, where tk is the number of cycles sk. Different cycles of
equal length are permuted between themselves with each other when their
elements interchange. This interchanges are counted by partial factorials
tk!. The index of cyclic permutations is
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n!/
∏

nk!st
kk . (7.15)

For example: for n = 4:

Orbit Cycle index Value
4 4!/1!4 6 One cycle of length 4
31 4!/1!1!3!1 8 One cycle of length 3, one cycle of length 1
22 4!/2!2 3 Two cycles of length 2
211 4!/1!!2!1 6 One cycles of length 2, two cycles of length 1
1 4!/4!1 1 Four cycles of length 1
Σ 24

7.6 Permutation Schemes

We introduced orbit schemes and now we have the first opportunity to use
them for calculating partial sums of cyclic indices. These partial sums are
known as different combinatorial identities. At first, we will arrange par-
tition schemes according to the number of cycles in permutations and the
length of the longest cycle k. For example for n = 6 we get:

n 1 2 3 4 5 6
k = 6 120

5 144
4 90 90
3 40 120 40
2 15 45 15
1 1
Σ 120 274 225 85 15 1

The row sums of consecutive schemes give the Table 7.2. Its elements
are known as the Stirling numbers of the first kind. Their name suggests
that there are more kinds of Stirling numbers. They are related by many
ways as we will see later.

The recurrence of Stirling numbers is

sij = (n− 1)si−1,j + si−1,j−1 . (7.16)

The formula was explained by describing how permutation matrices
Pn−1 are enlarged with the new row and column. We have (n − 1) off-
diagonal positions in the last row which split (n − 1) dimensional permu-
tation matrices and prolong some existing cycle but do not change their
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Table 7.2: Stirling numbers of the first kind
t 1 2 3 4 5 6 Σ

n=1 1 1
2 1 1 2
3 2 3 1 6
4 6 11 6 1 24
5 24 50 35 10 1 120
6 120 274 225 85 15 1 720

Figure 7.4: Central orbit in the 3 dimensional cube with the sides 0-2. Lines
connect points with distances 2.
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number. Then the unit element can be added on the diagonal but this op-
eration increases the number of cycles of unit length. In this way we obtain
the intermediate sums of several cycle indices directly without changes of
all corresponding orbits. Remember that these sums correspond to vertices,
edges, surfaces and generally n dimensional subsimplices of the surface sim-
plex. But here they split only one original orbit in the center of the plane
simplex or the central orbit in the cube (Fig. 7.4).

7.7 Rencontres Numbers

Another possibility to count permutations is to use the number of unit cy-
cles, this is to determine the unit elements on the main diagonal of the unit
permutation matrices, known as unmoved elements. The counts of parti-
tions can be obtained according to the number of ones in partitions. Using
this technique for tabulating permutation indices, we obtain the column
sums known as the rencontres numbers. They are shown in the Table 7.3.
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Table 7.3: Rencontre numbers
s 0 1 2 3 4 5 6 Σ

n=0 1 1
1 0 1 1
2 1 0 1 2
3 2 3 0 1 6
4 9 8 6 0 1 24
5 44 45 20 10 0 1 120
6 265 264 135 40 15 0 1 720

The recurrence is somewhat surprising; the rencontres numbers are ob-
tained from the zero column by multiplying it with binomial coefficients

rij =
(

i

j

)
ri−j,0 (7.17)

Compare this with the Table 4.6 of partitions ordered according to
the number of unit parts. Now these parts are just combined with other
parts. The elements of the Table 7.3 are obtained as terms of a somewhat
complicated expression

n! = 1 + (1− 1/1!)n + (1− 1/1! + 1/2!)n(n− 1) + . . . (7.18)

which can be formulated as

n! =
n∑

k=0

(−1/k!)k(n)k . (7.19)

For example: 4! = 1 + 0 + 1/2× 12 + 2/6× 24 + 9/24× 24.
Now it is necessary at least to explain, that the binomial coefficient

(
i
j

)
is

a ratio of 3 factorials i!/j!(i−j)!. How a binomial coefficient is obtained, we
will see later. Here we give an example how the 5-th row of the Table 7.3 are
obtained by equation (7.19): 1×44+5×9+10×2+10×1+5×0+1×1 = 120.

The rencontres numbers ri0 count permutations matrices with i rows
and columns having no unit elements on the diagonal (no unmoved object).
These matrices are combined with the diagonal unit matrices I with (i− j)
rows and columns in all possible ways counted by the binomial coefficient.

The rencontres numbers ri0 are known also as subfactorials, because
they produce factorials by the following equation which terms were de-
termined by 7.7, Now they are inserted as formal powers of subfactorials
ri = ri:
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n! = (ri + 1)a . (7.20)

It is possible to formulate equation (7.19) also in the matrix form as
the direct product

∆(n!) = R×B , (7.21)

where R is the matrix of subfactorials in rows and B is the matrix
of binomial coefficients. Inverting the formal powers we have r(n)0 = (k!n−
1). Inserting (k!)n = n! we obtain the formula

n!−
(

n

1

)
(n− 1)! +

(
n

2

)
(n− 2)!− . . .±

(
n

n

)
(n− n)! = (k!)a . (7.22)

This becomes for n going to infinity

n![1− 1 + 1/2!− 1/3! + . . .] ≈ nn/en , (7.23)

where e is the base of natural logarithms. This approximate formula
gives the rough Stirling approximation for factorials of large numbers. Com-
pare with the exact formula (7.4).

We should mention still another formal notation for subfactorials. It is
the notation of the theory of finite differences2.

r0(n) = [E − 1]n0! = ∆n0! . (7.24)

Here ∆n is not a diagonal matrix but a difference of the n-th degree, or
n times repeated difference of the basic state E.

We rencontres the rencontres numbers again in Chapt. 14.
There exists still another recurrence for subfactorials

rn0 = nrn−1,0 + (−1)a , (7.25)

For example: 5 × 9 − 1 = 44; 6 × 44 + 1 = 245. When we return
to the partition scheme in Table 7.3 and reclassify permutations without
unit cycles according to the number of cycles, or when we delete from the
original scheme (Table 7.2) all permutations with unit cycles, we obtain the
Table 7.4 of the adjoined Stirling numbers of the first kind.

The recurrence is

ai+1,j = i[aij + ai−1,j−1] . (7.26)

2This will be explained in Sect. 9.4.
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Table 7.4: Adjoined Stirling numbers of the first kind
j 0 1 2 3 Σ = r

i=0 1 1
1 0 0
2 1 1
3 2 2
4 6 3 9
5 24 20 44
6 120 130 15 265

The recurrence is justified again by possibilities to insert a new element
to existing cycles. Either we can insert it into an existing cycle or a new
cycle can be formed. It is simpler to formulate this for (i + 1) matrices.
There we have in (i + 1) dimensional matrix i off-diagonal possibilities to
insert a new element to existing cycles. Or we can add a new 2 dimensional
cycle to matrices with (i− 1) rows with the same number of possibilities.

7.8 Euler Numbers

We have not exhausted all possibilities of classifying permutations. An-
other statistics counts the number of segments of a permutations in which
its elements are arranged according to their natural order as increasing in-
dices. For example: a permutation (357168942) is split into four segments
357/1689/4/2. The recurrence of this statistics, known as Euler numbers,
is:

e11 = 1 ; eij = jei−1,j + (i− j + 1)ei−1,j−1 . (7.27)

If we give the i-th element to the end of each segment, the number
of segments remains unchanged. If we put it in the first place, we increase
the number of segments. Similarly, if we put it inside an existing segment
this is then split into two segments. There are (i − j) places inside seg-
ments. An alternative explanation is that this statistics counts elements of
permutation matrices, which are over the main diagonal. Here the index j
goes from 0 to (n− 1). The corresponding matrix is Table 7.8.

A question: How the inverse function of the Euler numbers can be
interpreted?

Second order Eulerian triangle is also known. Its recurrence equation is

t11 = 1 ; tij = jei−1,j + (2i− j)ti−1,j−1 . (7.28)
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Table 7.5: Euler numbers
j 1 2 3 4 5 6 Σ

i=1 1 1
2 1 1 2
3 1 4 1 6
4 1 11 11 1 24
5 1 26 66 26 1 120
6 1 57 302 302 57 1 720

Table 7.6: Mac Mahon numbers
k 0 1 2 3 4 5 6 7 8 9 10

n=1 1
2 1 1
3 1 2 2 1
4 1 3 5 6 5 3 1
5 1 4 9 15 20 22 20 15 9 4 1

The first column is formed by ones, on the diagonal are factorials, and
the row sums are odd factorials.

7.9 Mac Mahon Numbers

Till now we have counted permutations as objects. Now we will determine
their moments, expressed by the number of inversions in a permutation.
They are counted by zero elements over unit elements which are below the
main diagonal as in the example, where 4 on the first place has 3 inversions
and 3 on the second place only 2

x x 1 0
x x 0 1
x 1 0 0
1 0 0 0

 .

Permutations classified according to this method give the Mac Mahon
numbers as in Table 7.6.

Notice that here the parameter k does not end at the number n but
continues to the value n(n − 1)/2. It is as if we counted these values
on the diagonal of a square. The maximal moment k is just the sum of
values (i− 1) where i is going from 1 to n
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n∑
i=1

(i− 1) =
(

n

2

)
. (7.29)

The distribution of moments is symmetric and therefore the matrix
elements are related as

mik = mi,[i(i−1)/2]−k . (7.30)

The recurrence of Mac Mahon numbers mij is

mij =
n∑

k=0

(m− k, n− 1) ; m10 = 1 (7.31)

or for the k ≤ i:

mij = mi−1,j + mi,j−1 . (7.32)

If we add to a lesser permutation matrix the unit element on the last
diagonal place, it does not change the sum of displacements. It yields the
term mi−1,j . Matrices counted by the term mi,j−1 are sums of elements of
previous rows which moments are increased by adding a new element into
the corresponding column. They have the required dimensionality. Their
moments are increased by permutations of the last element into the first
column.

7.10 Spearman Correlation Coefficient

The sum of differences of positions of all objects permuted as compared
to the basic unit permutation is always 0. These differences can be either
positive or negative. The sum of squared differences must be necessarily
positive. These differences of positions can be treated as distances in the
cubes (see Fig. 7.4) for the three dimensional case and Fig. 7.5 where the
four dimensional case is drawn).

Reference point: 1 2 3 4 5 Σ
Permutation point: 5 2 4 3 1
(2-1) 4 0 1 -1 -4 0
Squares 16 0 1 1 16 34

If we divide obtained values by the largest possible sum of squares which
is 40 for n = 5, we obtain values going from 0 to 1 which characterize
permutations and are known as the Spearman correlation coefficient. It is
used for evaluation of probability of obtained rank statistics.
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Figure 7.5: 24 permutations of the string abcd. They are divided into four
sets beginning by the capitals. Arrange the remaining three symbols and
draw all permutations on the sphere.

A

B

CD

u u uuuu uu u s uu u u uuuu

u u uuuu

7.11 Reduced groups of cyclic permutations

Till now we have worked with permutations which were read from one side,
only. Most of our symbols determine from which side they must be read
(with some exceptions as W, A, T, 8, and other symmetric symbols are).
Imagine now, that a permutation is represented by a string of colored beads
as

(red)-(blue)-(white)-(green)-(yellow)

If we find such a string accidentally, we can not tell from which side
we should read it. The result is that we can not distinguish a half of
permutations as:

123↔ 321; 213↔ 312; 132↔ 231 .

The name of such a group, which is undistinguishable by readings from
both sides is the dihedral.

Still more complicated situation is if the string of colored beads forms
a necklage. Then we can not find neither the reading direction neither
the beginning of a permutation. Thus we have undistinguishable permuta-
tions:

(123− 231− 312)↔ (213− 132− 321) .
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Figure 7.6: Menage problem. Two sitting plans for four couples.
a

b

c

d

a

b

c

d

C

DA

B C D

AB

From problems connected with these reduced groups, we mention only
the task of menages: n married couples should be seated at a round table
in such a way that a woman should seat between 2 males but not alongside
her husband. For n = 4 there are 2 seating orders (Fig. 7.6).

The menage numbers M(n) are:

n 0 1 2 3 4 5 6
M(n) 2 -1 0 1 2 13 80

The negative value at n = 1 is necessary for complying with the recur-
rent relation:

(n− 2)Un = n(n− 2)Un−1 + nUn−2 + 4(−1)n+1 . (7.33)

For example: 3U6
5 = 15× 2 + 5× 1 + 4(−1) = 39; U6

5 = 13.

7.12 Groups of Symmetry

Till now we have supposed that vectors are defined in multidimensional
space and that the number of permutations is determined by the dimension-
ality of the space. It is possible to define groups which are only isomorphic
with some groups Sn of cyclic permutations. As an example we introduce
the group of 6 matrices with 2 rows and columns, which is isomorphic with
S3:
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I(
1 0
0 1

)
A(

1 0
0 −1

)

D(
−1/2

√
3/2√

3/2 1/2

)
G(

−1/2 −
√

3/2√
3/2 −1/2

)

E(
−1/2 −

√
3/2√

3/2 −1/2

)
P(

−1/2
√

3/2√
3/2 1/2

)

If we multiply by these 2 dimensional matrices a vector-row from the
right (or a vector-column from the left) its Euclidean length remains con-
stant but not the sum of their elements. The effect of these matrices can be
shown on the unit circle. Operators I and A are mutually orthogonal, the
other matrices rotate vectors for (2/3)π, that is for 120 degrees, 0.5 being
cos 60 0,

√
3/2 = 0.866 = 30 0.

Instead of cycles of different lengths, new symmetry elements appear
in the three dimensional geometry.

There are rotation axes. If a figure has k dimensional rotation axis,
it has k equivalent positions and returns to its original position after k
translations which rotate it around the axis.

The other kind of symmetry elements is the reflection plane which re-
flects a figure as a double sided mirror.

These basic symmetry elements combine in different ways and their
systems are known under different names.

7.13 Vierer Gruppe

One system of 4 unit permutation matrices 4× 4 is:
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I
1

1
1

1


A

1
1

1
1



B
1

1
1

1


C

1
1

1
1


If we imagine that these matrices permute vertices of a square labeled

a, b, c, and d, then I is the identity, which leaves the positions of corners
square unchanged, A and C reflect according to the planes perpendicular
with the sides of the square and B rotates the corners the square around
the center. The group contains all possible products of these four matrices.

With the group of these 4 matrices such groups of matrices are isomor-
phic, which are obtained by multiplying the unit permutation matrices P
from the left by a suitable matrix and from the right by its inverse

UPU−1 = Pa ; UU−1 = I . (7.34)

Using Hadamard matrices we get another group of four matrices

I
1

1
1

1


A

1
1
−1

−1



B
1
−1

1
−1


C

1
−1

−1
1



.

Notice, that corresponding matrices in both groups have identical traces,
which are known as characters of the group.



Chapter 8

Naive Matrices in Lower
Triangular Form

8.1 Another Factorial Function

Before we study all naive matrices N, we will deal at first with the naive
matrices in the lower triangular form which form a subgroup of naive ma-
trices. The remaining naive matrices can be obtained from them by per-
muting columns with the unit permutation matrices P from right. Recall
that naive matrices N have one unit element in each row. If a matrix is in
the lower triangular form then all its nonzero elements must be on or below
the main diagonal. Similarly, if a matrix is in the upper triangular form,
then all its nonzero elements must be on or over the main diagonal. From
all permutation matrices P only the identity matrix I has the triangular
form. But it exists simultaneously in both triangular forms as all diagonal
matrices do.

There is only one place in the first row of the lower triangular form for
the unit element, two places are in the second row and always one place more
in each consecutive row for the unit element. This situation is just opposite
to the construction of permutation matrices. There the possibilities, of
placement of the unit element decreased in every row. Nevertheless both
approaches give the same result. Therefore there are n! naive matrices in
the lower triangular form (or in the case of transposed naive matrices NT in
the upper triangular form). The transposed naive matrices can be mapped
onto points with natural coordinates in m dimensional cubes.

If we leave the first column as a dummy variable (indexed as zero col-
umn) for the center of the coordinate system: e0j = 1, the naive matrices

115
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in the lower triangular form can be compared with terms of the formal
multiplication

(1)(1 + a)(1 + a + b)(1 + a + . . .) =
n∏

j=1

(
n∑

j=1

ej) . (8.1)

All transposed matrices N are placed in m dimensional rectangular par-
allelepiped which sides are 0, 1, 2, 3, .., (n−1). With these matrices all clas-
sifications as with the permutation matrices will be repeated. Matrices with
m rows form in these parallepides factorial plane simplices. Compare them
with the generating function of partitions, explained in Sect. 4.10, where
the number of elements also decreased but from other reasons.

8.2 Decreasing Order Classification

In the preceding Chapter Young tables were introduced and compared with
the convolutions having cycles of length 1 and 2, only. The Young tables
correspond to naive matrices which partial column sums are always ordered
in the decreasing order:

k∑
i=1

nij ≥
k∑

i=1

ni,j+1 . (8.2)

For example: two naive matrices n = 3 are excluded by this rule:

A 1 0 0
0 1 0
0 1 0


B 1 0 0

1 0 0
0 0 1

 .

A is excluded since b2 > a, B is excluded since c > b0.

8.3 Stirling Numbers of the First Kind

These numbers count the naive matrices classified according to the number
k of elements on the main diagonal

snk = (n− 1)sn−1,k + sn−1,k−1 . (8.3)

There are (n−1) places under the diagonal in the n th row which can be
added to each naive matrix with k elements on the main diagonal without
changing k. This multiplies the first term.
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If we add 1nn, we increase the number of elements on the main diagonal
counted by the second term. See Table 7.2.

This is not all what can be said about the Stirling numbers of the first
kind. If we multiply the Stirling numbers of the first kind directly with
powers 2j−1 we get a table which row sums are equal to the half of the
higher factorial (i + 1)!/2 as in

1 2 3 4 5 Σ
m=1 1 1

2 1 2 3
3 2 6 4 12
4 6 22 24 8 60
5 24 100 140 80 16 360

When we multiply the Stirling numbers with powers 2(i − j), then
the row sums give (2i − 1)!/i!2i or the products of m odd numbers 1 ×
3× 5× . . .. The factorial is depleted of even numbers.

1 2 3 4 5 Σ
m=1 1 1

2 2 1 3
3 8 6 1 15
4 48 44 12 1 105
5 384 400 140 20 1 945

If the columns are multiplied with column ± signs alternatively, then in
the first case the row sums are zero, except m = 2, and in the second they
give lower odd factorials1.

8.4 Euler Polynomials

The Euler numbers (Table 7.5) classify naive matrices according to the
number k of nonzero columns. We can add the new element in the last row
into k already occupied columns or we can put it into (n − k) unoccupied
columns. It is clear that the index k can not be here 0, as it was convenient
at permutation matrices.

The Euler numbers are just the beginning of a series of polynomials
En(r) where r = 1. The Euler polynomial En(2) is obtained by multiplying
each previous column, except the first one, by powers of 2 as if elements of
naive matrices in columns had signs ± and all combinations of signs were
acceptable and finding the differences of the consecutive columns. The

1This is given without a proof. The proof will be shown later.
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Table 8.1: Euler polynomials En(2)
k 1 2 3 4 5 6 Σ

n=1 1 1
2 1 2 3
3 1 8 4 13
4 1 22 44 8 75
5 1 52 264 208 16 541
6 1 114 1208 2416 912 32 4683

resulting numbers are given in the Table 8.1 which elements are differences
of the matrix, obtained by multiplying the matrix of the Euler numbers
with the matrix of m-th powers of 2:

1 1 1 1 1 -1
2 2 2 1 -1

4 4 1
8 1

1 1 1 1 1 1
1 1 1 3 3 3 1 2
1 4 1 1 9 13 13 1 8 4
1 11 11 1 1 23 67 75 1 22 44 8

The row sums of the Table 7.1 are interesting. They are generated
directly by the formal equation

[1 + E(k)]m = 2E(m) , (8.4)

where E(k)i = E(i) and E(0) = 1. Then

2E(1) =
(

1
0

)
E(0) +

(
1
1

)
E(1) , (8.5)

from it E(1) = 1 and so on. These numbers will appear later many
times, as differences of complete plane simplices, but here they appear as
an extension of the factorial simplices or as the product of the matrix of
the Euler numbers with the diagonal matrix of powers 2j−1.

8.5 Mac Mahon Numbers

This statistics (Table 7.6) counts naive matrices according their moments
(or counting empty spaces in all rows to the first unit element) which are



8.6. STIRLING NUMBERS OF THE SECOND KIND 119

obtained by multiplying naive matrices by the diagonal matrix with indices
∆(j − 1). The recurrence is obtained from lesser matrices by repeating
n times terms of the next to the last row of the table of Mac Mahon numbers
with equal or increased moments. If the unit element in the last row is
placed in the first column the moment remains the same, and it is increased
to (n− 1) if it is placed in the n-th column. From each matrix with (n− 1)
rows n new matrices are produced. Their moments are counted as For
example: for n = 5:

Moments: 0 1 2 3 4 5 6 7 8 9 10
4 rows and columns 1 3 5 6 5 3 1

Term 6 1 1 1 1 1
Term 5 3 3 3 3 3
Term 4 5 5 5 5 5
Term 3 6 6 6 6 6
Term 2 5 5 5 5 5
Term 1 3 3 3 3 3
Term 0 1 1 1 1 1

Mac Mahon numbers 1 4 9 15 20 22 20 15 9 4 1

This scheme gives automatically the factorials.

8.6 Stirling Numbers of the Second Kind

When we look at the sequence aac, we see that in its matrix the column b is
missing. We excluded such strings as faulty Young tables or convolutions,
but the strings as abb were also not allowed, where b appeared twice, and
a only once. There is a difference in these two cases: If not all columns are
occupied successively, we jump in the space over some positions. Therefore
we will now count all naive matrices in the lower triangular form with
successively occupied columns. Their recurrence is

s11 = 1; sij = jsi−1,j + si−1,j−1 . (8.6)

It is possible to place a new element into j already occupied columns
and there is only one possibility, how to increase the number of occupied
columns. In this way we obtain a table of numbers that are known as the
Stirling numbers of the second kind (Table 8.2).

Stirling numbers of the second kind are inverses of the Stirling numbers
of the first kind. Similarly Stirling numbers of the first kind are inverses
of the Stirling numbers of the second kind. The inverse is obtained when
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Table 8.2: Stirling numbers of the second kind.
j 1 2 3 4 5 6 Σ

n=1 1 1
2 1 1 2
3 1 3 1 5
4 1 7 6 1 15
5 1 15 25 10 1 52
6 1 31 90 65 15 1 203

one from the two matrices ( Table 7.2 and Table 8.2) is multiplied with
alternating signs (−1)i−j .

Stirling found numbers bearing his name when he compared powers
of any number t with its factorial moments (t)k defined by the products

(t)k = t(t− 1)...(t− k + 1) . (8.7)

Stirling numbers of the first kind transform sums and differences of
powers into factorial moments as in: (4)3 = 24 = 2 × 4 − 3 × 16 + 1 × 64.
The Stirling numbers of the second kind invert sums of factorial moments
into powers as in : 43 = 64 = 1× 4 + 3× 12 + 1× 24. Here t can substitute
rational (irrational) numbers.

The row sums of Stirling numbers of the second kind, which count naive
matrices in the lower triangular form with successively occupied columns
are obtained as selfgenerating function

S(n) = (Si + 1)n−1, where Si = Si . (8.8)

Another possibility, how to these sum is with help of the Bell triangle,
also known as Aitken’s array or Pierce triangle:

1 2 3 4 5 Σ
m=1 1 1

2 1 2 3
3 2 3 5 10
4 5 7 10 15 37
5 15 20 27 37 52 151

The first column is given by diagonal elements, which are obtained as
sums of two elements in the preceeding column. Another possibility is by
using matrices. The first one is the matrix having the numbers S(n) on the
diagonal and under it, the second one is the matrix of binomial coefficients
BT. Then the numbers S(n) are obtained on the diagonal of the product.
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We can multiply the product further by the diagonal index matrix to obtain
moments

1 1 1 1 1
1 2 3 2

1 3 3
1 4

1 1 1 1 1 1 2 3 4
1 1 1 2 3 4 1 4 9 16
1 1 2 1 2 5 10 1 4 15 40
1 1 2 5 1 2 5 15 1 4 15 60

Notice that the matrix of the Stirling sums begins with two 1 and
on the diagonal of the product is only one 1 and then immediately the
higher sums follow. In the final product the sums are multiplied with cor-
responding powers. Since we labelled the matrix of binomial coefficients
as BT, we can consider its product with the diagonal matrix ∆(i) as the
logarithmic difference d(logS), similarly as it was derived in Sect. 6.4. The
inverse matrix of sums of Stirling numbers of the second kind has elements:

s−1
jj = 1; s−1

j−1,j = −[Sj−1/Sj ]; sij = 0, otherwise . (8.9)

We have shown one relation between Stirling numbers of the second
kind and the binomial coefficients. But there appears still another relation.
The difference of two successive sums of Stirling numbers is generated again
by a binomial

∆nSn = Sn − Sn−1 = (Sk+1 + 1)n−2 , (8.10)

where we put again Sk = Sk. For example: S6 − S5 = 1 × 1 + 4 × 2 +
6× 5 + 4× 15 + 1× 52 = 151.

The Stirling numbers of the second kind are defined by the formal rela-
tion

∆1
n(m)n = mn−1[(1 + 1/m)n−1 + (1 + 1/m)n−2 . . . + (1− 1/m)0] . (8.11)

Inserting m = 1, we obtain numbers S(n, 2) : ∆m1n = 1n[2n−1 +
2n−2 . . . + 20]. The other numbers are derived by the relation

∆m1n = (m + 1)∆m1n−1 + ∆m−11n−1 (8.12)

under the condition ∆010 = 1.
The differences of the Stirling numbers of the second kind
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Table 8.3: Differences of Stirling numbers of the second kind
j 1 2 3 4 5 6 Σ

m=1 1 1
2 0 1 1
3 0 2 1 3
4 0 4 5 1 10
5 0 8 19 9 1 37
6 0 16 65 55 14 1 151

Table 8.4: Substirlings
n 0 1 2 3 4 5 Σ

n=0 1 1
1 0 1 1
2 1 0 1 2
3 1 3 0 1 5
4 4 4 6 0 1 15
5 11 20 10 10 0 1 52

S(m,n)− S(m− 1, n) = ∆n−12m (8.13)

form the Table 8.3.
For example: ∆226 = 8[(3/2)3 + (3/2)2 + (3/2)1 + (3/2)0] = 65. This

number counts naive matrices in lower triangular form with 3 occupied
columns and 6 rows, obtained from 15 matrices counted by S(5, 2) by adding
the unit element into the third column and 2 × 25 matrices counted by
S(5, 3) increased by adding the new unit element into one from the two
first columns.

8.7 Substirlings

In analogy with subfactorials defined in Sect. 7.6, we introduce numbers
which we will call substirlings. They count naive matrices in lower trian-
gular form with successively occupied columns in another order, according
to the number of columns containing just one nonzero element. We have
shown that such orbits are differences of plane simplices, therefore also now
these matrices form differences. Their matrix is in the Table 8.4 which is
completed by the row and column indexed from 0. For example: s40 = 4
counts N : a4, a2b2, abba, abab.
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Now again the binomial coefficients appeared here as generating factors.
Naive matrices without any columns containing only one unit element are
combined with n columns with only one unit element and the result gives
the matrix elements. Therefore the sums of Stirling numbers of the second
kind are obtained by the formal binomial:

Sn = (sn0 + 1)n, where sk = sn0 . (8.14)

Another possibility, how the Stirling numbers of the second kind are ob-
tained, is the direct count of the corresponding matrices arranged according
to the powers of a. For example:

a
ab aa

abb, abc; aab, aba; aaa
.

We get a table where the naive matrices are arranged according to the rows
containing the symbol a. Again these matrices are obtained by multiply-
ing lower matrices (without this symbol) by binomial coefficients, showing
combinatorial possibilities:

j 1 2 3 4 5 6 Σ
m=1 1 1

2 1 1 2
3 2 2 1 5
4 5 6 3 1 15
5 15 20 12 4 1 52
6 52 75 50 20 5 1 203

Substirlings are in their turn the sums of the associated Stirling num-
bers of the second kind which count naive matrices in the lower triangular
form without empty columns, having column sums at least mk = 2. Their
recurrence is given by the formula

aij = jai−1,j + (i− 1)ai−2,j−1 (8.15)

and their values are given in Table 8.5.

8.8 Space of Four Statistics

We have mapped naive matrices in the lower triangular form on points
of rectangular n dimensional parallelepipeds. These points are classified by
three different statistics Euler, Stirling and Mac Mahon, in 3 directions.
They split the space behind the Euclidean one. These statistics distribute
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Table 8.5: Associated Stirling numbers of the second kind
j 0 1 2 3 Σ

m=0 1 1
1 0 0 0
2 1 1
3 1 1
4 1 3 4
5 1 10 11
6 1 25 15 41

Figure 8.1: Three statistics. A is Euler’s, B is Mac Mahon’s, and C is
Stirling’s. Arranged strings are a, horizontal symbol, vertical symbol.
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1 2

2 3
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-1 2

1 2

2 3

ba a a
a

A B C

points differently, as it is shown on the Fig. 8.1 for three dimensional space
and on the scheme for four dimensional space (Table 8.6).

We have compared three statistics, but a fourth one appeared here and
that is on the diagonal of the Stirling and Euler statistics. The Euler
numbers divide naive matrices in the lower triangular form according to the
number of occupied columns. The Stirling numbers of the second kind count
matrices with rows occupied consecutively and, these matrices appear on
the crossection of both statistics. The Euler statistics splits 6 naive matrices
in the lower triangular form with one unit element on the diagonal in three
groups the Stirling numbers evaluate differently naive matrices in the lower
triangular form with two unit elements on the diagonal.

I do not know what you think about these coincidences. The Euclidean
space is full of surprises. It seems to be alive and if we try to analyze it,
new layers appear just on elementary levels. Euclides was wrong when he
told to the king Ptolemaos that there was no other way to his space then
his axioms. Different combinatorial functions lead through this maze as the
Ariadne’s thread.
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Table 8.6: Scheme of four statistics for N4 in the lower triangular form.
Stirling I Mac Mahon

6
8
3 6

1 1 3 5 6 5 3 1
Euler 1 1 1

11 4 7 1 2 5 3
11 1 4 6 3 4 4
1 1 1

6 11 6 1 ↖ Stirling II
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Chapter 9

Combinatorics of Natural
Vectors

9.1 The Binomial Coefficient

The binomial coefficient is a special case of the polynomial coefficient. This
definition is invalid but it corresponds to the facts. The two dimensional
space is a special case of the multidimensional space.

When a binomial, say (a + b) is multiplied by itself m times and the
terms in the product grouped we get For example:

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 .

The first term 4 counts strings aaab, aaba, abaa, and baaa, the third
term 4 counts strings abbb, babb, bbab, and bbba. The binomial coeffi-
cient is written as the number m stacked over the number k in the brackets(

m

k

)
. (9.1)

The binomial coefficient is the product of three factorials m!, k!−1, and
(m− k)!−1. Therefore (

m

k

)
=

(
m

m− k

)
. (9.2)

The binomial coefficients have many interesting properties. For exam-
ple, if n is a prime number, all elements of the binomial, except 1, are
divisible by n.

127
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Another curious property is distribution of even coefficients. If we write
The Pascal triangle in the isoscele form, than even coefficients , e. g.(
8
k

)
, propagate as the isoscele triangles, and there appear such subsidiary

triangles.
There are many relations concerning the binomial coefficients. One from

them: (
n

2

)
+

(
n + 1

2

)
= n2 . (9.3)

9.2 The Polynomial Coefficient

A partition of the number m into n parts is an n dimensional vector m which
elements are ordered in the decreasing order, mj ≥ mj+1. From this vector
all other vectors on the given orbit can be generated when its elements are
permuted by the unit permutation matrices acting on the partition vector
from the right. These vectors correspond to the scalar products of naive
matrices N with the unit vector rows JT or to the quadratic forms NTN,
because

JTN = JTNTN . (9.4)

There are n! permutation matrices, but not as many permuted vector
columns, when some elements of the vector row are not distinguishable.
Vectors with equal length mk point to the sphere and if rotated, their
permutations are undistinguishable. If all elements of the vector are equal,
then no permutations have any effect on the partition vector.

We divide vector elements into two groups, one with all zero elements,
that is n0 elements, and the second group with all remaining (n − n0)
elements. The number of possible permutations will be reduced from the
factorial n! to the binomial coefficient

(
n
n0

)
, or n!/n0!(n− n0)!.

In the next step we single out from the second group the vectors with the
length 1, their number is n1. All other vectors will be counted by the third
term (n− n0 − n1), and corresponding permutations by the binomial coef-
ficient (n− n0)!/n1!(n− n0 − n1)!. In this way we proceed till all possible
values of mk are exhausted. If some nk = 0, then conveniently 0! = 1 and
the corresponding term is ineffective. At the end we obtain a product of
binomial coefficients:

(
n!

n0!(n− n0)!

) (
(n− n)!

(n− n0 − n1)!

) (
(n− n0 − n1)!

n2!(n− n0 − n1n2)!

)
. . .
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(n−

∑m−1

k=0
nk)!

nm!0!

)
(9.5)

Equal factorials appear consecutively as dividends and divisors. When
they cancel, the polynomial coefficient remains from the product of binomial
coefficients

n!/
∏
k≥0

nk! . (9.6)

Lets call it the polynomial coefficient for n permutations because it is
obtained by permuting n columns. Later we will construct another poly-
nomial coefficient for permutations of rows of naive matrices.

We limited the index k by the lower limit 0. The coefficient could be
used actually also for vectors with negative elements. The numbers nk of
equal vectors are always positive even if the vectors themselves are negative.
We count by the polynomial coefficient (9.2) points on the partition orbits
of the positive cone of the n dimensional space.

Please note the importance of this step. We know the vector m ex-
actly, but we replace it by the corresponding partition. All points on the
given orbit are considered to be equivalent. Replacing the vector m by the
partition is a logical abstraction. We can proceed further, the partition
is compared with an analytical function and the orbit is described by a
density distribution.

9.3 Simplex Sums of Polynomial Coefficients

Now it is possible to apply again partition schemes and to study sums
of polynomial coefficients on all orbits of plane simplices, it means all nat-
ural n dimensional vectors with constant sums m.

The overall sum is known in combinatorics as the distribution of m undis-
tinguishable things (objects) into n boxes. It is counted by a binomial
coefficient

∑
k≥0

n!/
∏

nk! =
(

m + n− 1
m

)
=

(
m + n− 1

n− 1

)
. (9.7)

Both binomial coefficient are in reality different forms of one coefficient.
Most easily this binomial coefficient is obtained by following all possibilities
distributing m things into a row of (n− 1) bars (the objects of the second
kind) representing dividing walls of compartments. There are (m + n− 1)
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objects of two kinds and the result is simply given by a binomial coeffi-
cient. Who is not satisfied with this explanation, can prove (9.3) by the
full induction.

We tested the relation at simple cases and it functioned well. Thus we
suppose that it is true for all n dimensional vectors with (m− 1) elements
and to all (n− 1) dimensional vectors with m elements. We use the propo-
sition for counting points with sums m in n dimensions. These points we
divide into two distinct subsets. In one subset will be all points having as
the last element 0. Clearly, they all are in (n − 1) dimensional subspace
and they are counted by the binomial coefficient

(
m+n−2

m

)
. In the second

subset vectors having as the last element at least 1 are counted. They are
obtained from partitions of (m − 1) things into exactly n parts by adding
1 to the first element. This addition does not change the corresponding
number of points

(
m+n−2

m−1

)
. The result is formed by a sum of 2 binomial

coefficients and verified by calculations

(
(m + n− 2)!
m!(n− 2)!

)
+

(
(m + n− 2)!

(m− 1)!(n− 1)!

)
=(

(m + n− 2)![(n− 1) + m]
m!(n− 1)!

)
=

(
m + n− 1

m

)
. (9.8)

As was said that we will not be interested in vectors with negative
values, but it is instructive to show results according to the lover limit of
the value r, which appears as the parameter (1 − r) of the term n in the
binomial coefficients. The value r can be considered as differentiating of
the simplex

Lower limit -1 0 1 2

Points on the simplex
(
m+2n−1

n−1

) (
m+n−1

n−1

) (
m−1
n−1

) (
m−n−1

n−1

)
The binomial coefficients

(
m+3−1

m

)
are known as triangle numbers. They

count points of 3 dimensional planes which are regular triangles.

9.4 Differences of Normalized Simplices

We have counted points of the plane simplices directly, now we apply par-
tition schemes and insert into them polynomial coefficients, similarly as we
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Table 9.1: Van der Monde identity
k 1 2 3 4 5 6 Σ

m=1 1 1
2 2 1 3
3 3 6 1 10
4 4 18 12 1 35
5 5 40 60 20 1 126
6 6 75 200 150 30 1 462

did for the cycle indices in Chapt. 7. We limit ourselves to cases when
m = n. As an example, we give the scheme for m = n = 6:

n 1 2 3 4 5 6
m=6 6

5 30
4 30 60
3 15 120 60
2 20 90 30
1 1∑

6 75 200 150 30 1

In the first column vertices of the plane simplex are counted, in the
second column points on 2 dimensional edges, in the third column points of
its 3 dimensional sides. Only the last point lies inside of the 6 dimensional
plane, all other 461 points are on its borders.

This is a rather surprising property of the high dimensional spaces that
the envelope of their normal plane simplices is such big. But we can not
forget, that usually m � n and then there are more points inside than on
the border.

Column sums of consecutive normalized plane simplices can be arranged
into Table 9.1 which rows are known as the Van der Monde identity.

The elements in each row can be written as products of two binomial
coefficients, For example: 75 = (6!/4!2!) × (5!/4!1!). This is a special case
of the identity

m−k∑
i=0

(
m

k + i

)(
m− k

i

)
=

(
m + k

m

)
=

(
m + n− 1

n− 1

)
. (9.9)

The sum of products of two binomial coefficients can be written as
a formal power of a binomial
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((
m

i

)
+ 1

)n

=
(

m + n

m

)
. (9.10)

This relation counts the points of the plane simplices in one direction.
Its special case is the Wallis identity for m = n:

n/2∑
i=0

(
n

i

)2

=
(

2n

n

)
. (9.11)

We interpret it as the simplex in which the first vector is rooted and
only (n− 1) other vectors are permuted. For example:

Orbits 4000 3100 1300 2200 2110 1210 1111
∑

Points 1 3 3 3 3 6 1 20
Counts 1 9 9 1 20

9.5 Difference According to Unit Elements

When we arrange the partition scheme according to the number of unit
vectors n1, we obtain a difference of the plane simplex. For example for
m = n = 5:

n1 0 1 2 3 4 5
m=5 5

4 20
3 20 30
2 30 20
1 1∑

25 50 30 20 0 1

The resulting column sums of polynomial coefficients are tabulated
in Table 9.2.

The numbers bi0 are formed by vectors without any unit elements. They
can be called subplane numbers, because they generate the number of points
of the normal plane simplex by multiplying with binomial coefficients:

(bi + 1)m =
(

m + n− 1
m

)
. (9.12)

They are (n − k) dimensional vectors without unit elements but with
zero elements. Their (n− k) elements are combined with k unit elements.
When m 6= n, then these relations are more complicated. Corresponding
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Table 9.2: Unit elements difference
n1 0 1 2 3 4 5 6 Σ

m=0 1 1
1 0 1 1
2 2 0 1 3
3 3 6 0 1 10
4 10 12 12 0 1 35
5 25 50 30 20 0 1 126
6 71 150 150 60 30 0 1 462

subplane numbers are obtained by calculations of partitions without unit
parts. The beginning of the table is

n 0 1 2 3 4 5 6
m=0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0
2 0 1 2 3 4 5 6
3 0 1 2 3 4 5 6
4 0 1 3 6 10 15 21
5 0 1 4 9 16 25 36
6 0 1 5 13 26 45 71

Its values b(i, j) for small m are:

• b(0,n) = 1;

• b(1,n) = 0;

• b(2,n) =
(
n
1

)
;

• b(3,n) =
(
n
1

)
;

• b(4,n) =
(
n
1

)
+

(
n
2

)
=

(
n+1

2

)
;

• b(5,n) =
(
n
1

)
+ 2

(
n
2

)
= n2;

• b(6,n) =
(
n
1

)
+ 3

(
n
2

)
+ 3

(
n
3

)
= (n3 − n)/2.

The subplane numbers appear here on the diagonal. An example of
their application for m = 4, n = 6:

21 + 6× 5 + 15× 4 + 20× 0 + 15× 1 = 126 =
(

9
4

)
.

Vectors without unit elements are combined with unit vectors.



134 CHAPTER 9. COMBINATORICS OF NATURAL VECTORS

9.6 Differences According to One Element

In partition schemes the points are counted in spherical orbits. We orient
the plane simplex in the direction of one vector and then differentiate the
plane according to only one specific vector x. It can be shown on the
2 dimensional complex:

ma 0 1 2 3 4 5 Orbit
Points 0 * * * * * * 0,m

1 * * * * * 1,(m-1)
2 * * * * 2,(m-2)
3 * * * 3,(m-3)
4 * * 4,(m-4)
5 * 5,(m-5)

Number 1 2 3 4 5 6

The 2 dimensional complex forms a 3 dimensional simplex and its points
for different values of the vector a are counted by column sums. It is similar
to a situation as when points of the (n-1) dimensional complex are counted
for different values of m, mk going from 0 to m. The points are counted by
binomial coefficients

(
m+k−2

k

)
. For example: for n = m = 7:

mk 0 1 2 3 4 5 6 7
Binomial coefficient 792 462 252 123 56 21 6 1

We obtain the identity

m∑
k=0

(
m + k − 2

k

)
=

(
m + n− 1

m

)
. (9.13)

Now we introduce another difference.

9.7 Difference ∆(n) of Plane Simplices

Till now zero elements were permuted with the other elements. We exclude
the zero element and count only existing (nonzero) vectors and not virtual
vectors. It means, that we count consecutively all k dimensional vectors
(k = 1 to n) with constant sums m. If we draw the tetrahedron (Fig. 9.1),
then the counted set of points is formed by one vertex, one edge without
the second vertex, the inside of one side and by the four dimensional core.
In combinatorics these vectors are known as compositions. They can be
arranged onto partition schemes. For m = 5 we get:
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Figure 9.1: Difference of the plane simplex. It is formed by one vertex, one
incomplete edge, one incomplete side, etc.

u u u u uu uu uu u
u u uu uu

Table 9.3: Binomial coefficients (matrix B).
k 1 2 3 4 5 6 Σ

m=1 1 1
2 1 1 2
3 1 2 1 4
4 1 3 3 1 8
5 1 4 6 4 1 16
6 1 5 10 10 5 1 32

n 1 2 3 4 5 Σ
m=5 5 1

4 41;14 2
3 32;23 311;131;113, 5
2 221;212;122; 2111;1211;1121;1112 7
1 11111 1∑

1 4 6 4 1 16

The column sums of the normal plane simplices give Table 9.3.
Both indices in Table 9.3 were decreased by one, to obtain the true

binomial coefficient
(

k−1
m−1

)
. We had difficulties with the binomial coefficient

before, when it appeared as
(
m+n−1

m

)
. In that case they fill the matrix

otherwise, as in the Table 9.4:
In both tables of binomial coefficients, their elements were obtained

similarly that is a sum of two neighbors, the left one and the upper one,
except that in the Table 9.3 the left element is added only if j ≥ i.

Recall the transactions with partitions and their counts according to
the lower allowed limit of parts. Here a similar shift of values of Tables
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Table 9.4: Matrix BBT of binomial coefficients.
k 1 2 3 4 5 6

m=0 1 1 1 1 1 1
1 1 2 3 4 5 6
2 1 3 6 10 15 21
3 1 4 10 20 35 56
4 1 5 15 35 70 126
5 1 6 21 56 126 252

9.3 and 9.4 occurred, but the operation is done by the matrix of binomial
coefficients BT. We permute k nonzero elements with (n−k) zero elements
and from a part of the plane simplex we obtain the whole simplex. Therefore
this part is the difference ∆(n). Because there are more differences, this
is the difference according to the number of vectors n. In the tetrahedron
one vertex is multiplied four times, one edge six times, one side four times,
and the inside only once.

Now we can return to Table 9.3. Its elements have the recurrence

b11 = 1; bij = bi−1,j + bi−1,j−1 . (9.14)

They are generated by the binomial

(1i + 1)m = 2m . (9.15)

We already formulated the recurrence formula of the Table 9.4 in (9.8).
Notice that the elements of the Table 9.4 are sums of all elements of its
preceding row or column, which is the consequence of the consecutive ap-
plications of (9.8).

The inverse matrix B−1 to the matrix B is obtained from the formal
binomial

(1i − 1)m = 0 . (9.16)

It is just the matrix B which elements are multiplied by alternating
signs (−1)j−i.

9.8 Difference ∆(m)

When we arranged the vector compositions in the table, we treated only its
column sums. There are also row sums which count compositions classified



9.9. THE SECOND DIFFERENCE – THE FIBBONACCI NUMBERS137

Table 9.5: Composition of vectors with m parts
n 1 2 3 4 5 6 7 8 9

m =1 1 1 1 1 1 1 1 1 1
2 1 2 4 7 12 20 33 54
3 1 2 5 11 23 47 94
4 1 2 5 12 25 59
5 1 2 5 12 28
6 1 2 5 12

1 2 5
1 2

1∑
1 2 3 8 16 32 64 128 256

according to the greatest vector mk. The consecutive results for n = m can
be arranged into the Table 9.5

The elements cij of the Table 9.5 are sums of the polynomial coefficients
counting compositions. Their column sums are 2j−1. For j ≤ j/2 the
elements cij become constant. For example

Orbit Number of compositions
m− 3, 3 2

m− 3, 2, 1 6
m− 3, 13 4∑

12.

For i = 2 the elements c2j are sums of the binomial coefficients and
their recurrence is

c2j =
j/2∑
k=1

(
j − k

k

)
= 2c2,j−1 − c2,j−3 , (9.17)

where k is the number of 2.

9.9 The Second Difference – the Fibbonacci
Numbers

When we admit as the smallest element 2, we get the Table 9.6 of points
of truncated plane simplices. Its row sums are known as the Fibbonacci
numbers. In a medieval arithmetic book they appeared as the answer on a
number of rabbit pairs in the consecutive litters.
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Table 9.6: Fibbonacci numbers
n 1 2 3 Σ

m=2 1 1
3 1 1
4 1 1 2
5 1 2 3
6 1 3 1 5
7 1 4 3 8

The vectors counted for m = 7 are: 7; 52, 25, 43, 34; 322, 232, 223.
Notice, that the elements of the Table 9.6 are binomial coefficients shifted
in each column for 2 rows. Fibbonacci numbers Fm have the recurrence

Fm = Fm−1 + Fm−2 . (9.18)

The elements of the Table 9.6, fij are obtained by adding 2 to each
vector with (j − 1) nonzero elements or 1 to the greatest element of the
j dimensional vectors

f21 = 1; fij = fi−2,j−1 + fi−1,j . (9.19)

In each row all elements of both preceding rows are repeated which gives
the recurrence of the Fibbonacci numbers.

Another way to obtain the Fibbonacci numbers is to count the compo-
sitions in which all elements are odd. We get a scarce Pascal triangle:

k 1 2 3 4 5 6 Σ
m=1 1 1

2 0 1 1
3 1 0 1 2
4 0 2 0 1 3
5 1 0 3 0 1 5
6 0 3 0 4 0 1 8

For example, the last row counts the compositions: 51, 15, 33; 4 ×
(3111); 111111.

9.10 Fibbonacci Spirals

If we draw on two orthogonal axes consecutive Fibbonacci numbers, then
the hypotenuses connecting consecutive points of the corresponding right



9.10. FIBBONACCI SPIRALS 139

Figure 9.2: Fibbonacci spiral. Squared hypotenuses of right triangles with
consecutive Fibbonacci legs are odd Fibbonacci numbers.
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triangles are square roots of the squared Fibbonacci numbers F2k+1 (Fig.
9.2). This implies the identity

F2k+1 = F 2
k+1 + F 2

k . (9.20)

A similar identity is obtained for even numbers from the difference of two
squared Fibbonacci numbers, For example: F8 = F 2

5 − F 2
3 = 21 = 25 − 4.

This difference can be written as a sum of products of the Fibbonacci
numbers.

F2k = F 2
k+1 − F 2

k−1 = F 2
k + FkFk−1 . (9.21)

We decompose the higher Fibbonacci numbers consecutively and express
coefficients by the lower Fibbonacci numbers as:

F2k+1 = F2F2k + F1F2k−1 = F3F2k−1 + F2F2k−2 = . . . (9.22)

There appears still another formula

Fn+1Fn−1 − F 2
n = (−1)a . (9.23)

For example: at n = 5 : 3× 8− 25 = −1.
This relations be formulated in the matrix form (using knowledge what

the matrix determinant is) as
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(
Fn+1 Fn

Fn Fn−1

)
=

(
1 1
1 0

)n

.

This relation leads to two things. The first one is the eigenvalues of
the matrix, see later Chapters, the second one is the zero power of this
matrix: (

1 1
1 0

)0

=
(

1 0
0 1

)
=

(
F1 F0

F0 F−1

)
.

On the diagonal the values Fn+1 and Fn−1 are. This fact gives a possi-
bility to prolongate the Fibbonacci numbers to negative indices. This series
must be: 1,−1, 2,−3, 5,−8, . . .. We obtain these numbers again as the sums
of the two consecutive Fibbonacci numbers, row sums of the elements of
B−1 or as the elements of their generating matrix(

0 1
1 −1

)n

.



Chapter 10

Power Series

10.1 Polynomial Coefficients for m Permuta-
tions

The polynomial coefficients were defined for permutations of columns of vec-
tor rows. It is clear, that such a coefficient must be applicable to transposed
vector-rows, it means to vector-columns. It seems that it is not necessary to
have some special coefficients for permutations of rows of vector columns,
when the only difference would be, that corresponding permutation matri-
ces acted on the vector from the left instead from the right. But a different
situation appears for strings of symbols, For example: (aaabbccdef)T.
We determine easily the number of produced strings by a polynomial coef-
ficient 10!/3!2!2!1!1!1!. We cannot distinguish equal symbols and therefore
their mutual permutations are ineffective as permutations of vectors having
equal length. But this polynomial coefficient is different from the polyno-
mial coefficient for n permutations.

The polynomial coefficient for n permutations permutes the numbers
nk of vectors having the same value (frequency) mk. Now the appearances
of individual vectors j, counted as mj , are permuted. It is clear from the
example that some values mj can be equal for more vectors (1 for three,
2 for two). Thus a new index k is useful (its value coincides with the
number mk itself. The number of vectors with the value mk is nk, and the
polynomial coefficient for m permutations is written as

m!/
n∏

j=1

mj ! = m!/
∏
k≥0

mk!nk ; where m =
n∑

j=1

mj =
∑
k≥0

nkmk . (10.1)

141
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The m permutations transform the sequence of symbols for example
(dagfabcace)T, whereas n permutations act as substitutions, For example:
(abcceeefgg)T. The substitution a into e was not direct, but it was a part
of a cycle, moreover g appeared (which was not in the example) but as
a column with zero elements in the alphabet matrix.

10.2 Naive Products of Polynomial Coefficients

In Chapt. 7 we studied symmetry of a special class of the naive matrices,
having one unit element not only in rows but simultaneously in columns.
They all go to an orbit consisting only from one point.

Now we shall find the symmetry index of two groups of cyclic permuta-
tions acting simultaneously on other naive matrices from the left and from
the right:

PmNPn . (10.2)

The action of the permutation matrices from the left is counted by the
polynomial coefficient for m permutations (10.1), the action of the permu-
tation matrices from the right is counted by the polynomial coefficient for
n permutations (9.1). The effect of permutations from the right is identical
with the n permutations of columns of the vector-row m of the column
sums of naive matrices:

JTNPn = mPn . (10.3)

Both actions are independent and therefore the final result is just the prod-
uct of both coefficients∑

(n!/
∏
k≥0

n!)(m!/
∏
k≥0

mnk

k !) = nm . (10.4)

The sum is made over all partition orbits. It is a special case of the New-
ton polynomial formula, where coefficients having the same partition struc-
ture are counted together by the polynomial for n permutations1. The final
result is obtained easily. Exactly n columns are placed in each row, where
one element can be put. Individual choices in m rows are independent and
therefore they multiply.

The right side result is known as the distribution of m distinguishable
objects into n boxes. Objects are distinguished by their index i. This index

1The identity is known in physics as the Polya-Brillouin statistics. But Brillouin and
others did not recognized its key importance.
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Table 10.1: Power series sequence
k 1 2 3 4 5 6 Σ

m=1 1 1
2 2 2 4
3 3 18 6 27
4 4 84 144 24 256
5 5 300 1500 1200 120 3125
6 6 930 10800 23400 10800 720 46656

is lost in a sum. The distinguishability is not a property of things but
circumstances2. All 1 in naive matrices are identical, only their positions
vary. If they were different, it were necessary to introduce a third index,
which gives another statistics (see later).

The difference against the cycle index (Equation 7.15) is the second
factorial m! and factorials of mk instead their first powers. When we use
(10.2) for the partition 1m we obtain (n!/n1!)(m!/1!n1) = m!. The cycle
index splits the Sm group according to the cycle structure.

10.3 Differences in Power Series

When we arrange polynomial coefficients into partition schemes we obtain
again column sums as for m = n = 6 :

k 1 2 3 4 5 6 Σ
m =6 6 6

5 180 180
4 450 1800 2250
3 300 7200 7200 14700
2 1800 16200 10800 18800
1 720 720
Σ 6 930 10800 23800 10800 720 46656 = 66

From consecutive schemes we obtain Table 10.1.
In Table 10.1, only the first column and the row sums are clearly con-

nected with m and nm. Moreover there appear factorials but other elements
grow too fast to be analyzed directly. But all elements are divisible by m.

2This has an important philosophical consequence. In previous century, a question
was disputed if the microparticles are distinguishable or not. But the notion of distin-
guishability was ill defined.
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Table 10.2: Differences ∆n0m.
n 0 1 2 3 4 5 6 ∆n0m

m=0 1 1
1 1 1
2 1 2 3
3 1 6 6 13
4 1 14 36 24 75
5 1 30 150 240 120 541
6 1 62 540 1560 1800 720 4683

In this way the Table 10.1 is decomposed into the direct product of two
matrices. One from them is the matrix of binomial coefficients

(
m
k

)
. This

is the matrix BT. The other one is the matrix of differences ∆n0m:
We already encountered the row sums ∆n0m in Table 9.1 as the Euler

polynomials En(2). These numbers count the naive matrices in lower tri-
angular form with nonempty columns according to the number of columns.
For example: for m = n = 4:

n 1 2 3 4
Basic string aaaa aaab aabb abbb aabc abbc abcc abcd
Permutations 1 4 6 4 12 12 12 24
Counts 1 14 36 24

The binomial coefficients
(
m
k

)
permute nonzero columns with zero columns.

The table of differences has the first row and column indexed with zero
indices. But they contain, except the element 100, only zeroes. This elimi-
nates the effect of the first row of the binomial matrix in the direct product.

The recurrence in the Table 10.2 is simple

m00 = 1; mij = j(mi−1,j−1 + mi−1,j) . (10.5)

In each column we have j possibilities how to add the new element.
Either it is added to the occupied columns, or it is added into a new column.
Then other column are only shifted without permuting.

Table 10.1 is the direct product cij = aij×bij . When we find the normal
product (∆n0m)BT, we obtain the matrix which elements are powers ji.
For example
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Table 10.3: Differences of power series
k 0 1 2 3 4

m=0 1
1 0 1
2 1 1 1
3 14 3 1 1
4 181 13 3 1 1

1 1 1 1 1
1 2 3 4

1 3 6
1 4

1 1 1 1 1 1
1 1 2 3 4
1 2 1 4 9 16
1 6 6 1 8 27 64

Even the Table 10.2 is not an elementary one. It can be decomposed
again into the matrix of the Stirling numbers of the second kind (Table
8.2) and the diagonal matrix of factorials ∆(j!) which multiply the Stirling
matrix from the right. The Stirling numbers of the second kind count
naive matrices in the lower triangular form. This condition assures that all
columns form a base for column permutations, when the restriction of the
lower triangular form is removed.

In another arrangement, we can form the table of finite differences as
in Table 10.3.

In the zero column are counted strings of the simplex which are not
in its difference. The elements in other columns are consecutive differences.
For example: the elements in d30 = 14 are: b3, c3, b3, 3b2c, 3bc2, 3a2c, 3ac2.
The column indices correspond to the powers of the first index, For example:
d41 = 13 = ab3 + 3ab2c + 3abc2 + 6abcd, d42 = 3 = a2b2 + 2a2bc. When
we multiply this matrix with the transposed matrix of binomial coefficients
BT, we get on the diagonal of the product corresponding powers nn. The
binomial coefficient permutes the first vector with other already permuted
vectors.

10.4 Operator Algebra

We used the operator notation many times. Now we shall explain its no-
tation. There exist the identity function E and the difference function ∆.



146 CHAPTER 10. POWER SERIES

Moreover there are formal powers 0n. These functions are defined recipro-
cally as

∆m0n = [Em0n − 1]m =
m∑

j=0

(
m

j

)
(−1)j(m− j)m . (10.6)

This gives for the corresponding matrix elements sums of powers of
the index m:

• ∆m01 = 1× 1m,

• ∆m02 = 1× 2m − 2× 1m,

• ∆m03 = 1× 3m − 3× 2m + 3× 1m.

We calculate for n=3:

∆m 03 m=1= 1×3− 3× 2 + 3× 1 =0,
m=2= 1×9− 3× 4 + 3× 1 =0,
m=3= 1×27− 3× 8 + 3× 1 =6,
m=4= 1×81− 3× 16 + 3× 1 =36 .

The original function is restored by the product of ∆m0n with the matrix
of binomials. This corresponds to the formal equation

nm = Em 0n = (1 + ∆m 0n)m . (10.7)

The row sums of the Table 10.2 taken with alternating signs (the differ-
ence of even and odd columns) gives (−1)i. Let suppose that this is true
for some row. The elements of the next row are just multiplied sums of the
preceding row:

dij = j(di−1,j−1 + di−1,j) . (10.8)

When we make the difference d1 − 2(d1 + d2) + 3(d2 + d3) − . . . =
−d1 + d2 − d3 . . ., we get the elements of the preceding row with the other
signs which sum was +/-1.

10.5 Differences dx and Sums of nm

The power nm is the binomial, if we write n as a sum n = (n−1)+1. Then

nm = [(n− 1) + 1]m =
m∑

k=0

(
m

k

)
(n− 1)k . (10.9)
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For example: 34 = (1×1+4×2+6×4+4×8+1×16) = 81. The terms of
the binomial are differences of the number of strings of the plane simplices
according to one vector (this vector must have the prescribed value).

The function nm can be differentiated still in another way. When we
look at its Table 10.3, we see that the powers can be defined by their row
differences

(nm − 1) = (n− 1)
m∑

i=0

ni . (10.10)

For example: 27 − 1 = 2(1 + 3 + 9). We can write this as the sum
of differences of an infinite sequence 1/nk. We add 1 to both sides of (10.5)
and write it as

nm = (n− 1)
∞∑

k=1

nm−k . (10.11)

This equation is true even for m = 1 and we therefore have

n/(n− 1) = (n− 1)
∞∑

i=0

n−i . (10.12)

This infinite sequence is hidden in the zero simplex because the numbers
with negative powers 1/ai cannot be interpreted as geometrical points with
have negative sign, a−1 is not identical with −a.

For the sums of the first rows the following identities are found easily

n∑
k=1

k0 = n;
n∑

k=1

k1 =
(

n + 1
2

)
;

n∑
k=1

k3 =
(

n + 1
2

)2

. (10.13)

All identities are easily proven by the full induction. Especially if the
last one is true for n, then for (n + 1) we have(

n + 1
2

)2

+
(

n + 1
1

)3

=
(

n + 2
2

)2

.

This is verified by direct calculations.
It should be noted that the i-th row of the Table 10.2 is obtained con-

secutively by multiplying this matrix by the Q from the right from the
(i-1)-th row. Q is the diagonal matrix of indices which repeat once again
just under the main diagonal as in the following example
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Table 10.4: Rencontres numbers of differences
k 0 1 2 3 4 5 Σ

m=0 1 1
1 0 1 1
2 1 1 1 3
3 4 6 2 1 13
4 27 28 16 3 1 75
5 187 214 104 31 4 1 541

1
1 2

2 3
3 4

1 1
1 1 2
1 2 1 6 6
1 6 6 1 14 36 24 .

10.6 Some Classification Schemes

We can classify naive matrices similarly as it was done for the permutation
matrices. Such classifications lead sometimes to complicated recurrences.
For example if we imitate the rencontres numbers and count the number
of elements on the main diagonal in vector strings, we obtain for (3, 3)
following two classifications

The difference Σ The rest of the simplex Σ Σ
k=0 bca, cab, bab, baa 4 ccb, bcb, caa, cca 4 8

1 aaa, aab, bba, acb, bac, cba 6 bbb, ccc, cbb, bcc, aca, cac 6 12
2 aba, abb 2 bbc, cbc, aac, acc 4 6
3 abc 1 0 1

Σ 13 14 27

The Table 10.3 shows the rencontres numbers in the difference simplices,
the Table 10.4 gives the counts for all naive matrices

We will not analyze these recurrences, but show another one. If the
strings in plane simplices are classified according to the number of unit
vectors n1, we obtain the difference Table 10.5.



10.7. CLASSIFICATION ACCORDING TO TWO VECTORS 149

Table 10.5: Rencontres numbers in power series
k 0 1 2 3 4 Σ

m=0 1 1
1 0 1 1
2 1 2 1 4
3 8 12 6 1 27
4 85 104 54 12 1 256

Table 10.6: Differences of powers according to n1

k 0 1 2 3 4 5 6 Σ
m=0 1 1

1 0 1 1
2 2 0 2 4
3 3 18 0 6 27
4 40 48 144 0 24 256
5 205 1000 600 1200 0 120 3125
6 2556 7380 18000 7200 10800 0 720 46656

The first column elements of the Table 10.5 can be named subpowers, be-
cause they generate the other elements in rows which sums give the powers
nn. The recurrence is

pi0 = 1 pij = pi−j,0 [i!/(i− j)!]2 × 1/j! = pi−j,0j!
(

i

j

)2

. (10.14)

This recurrence can be divided into two steps. At first to naive matrices
with (i− j) elements j unit elements are added and the rows are permuted
using the binomial coefficient

(
i
j

)2
. Then we repeat permutations with

columns using the same binomial coefficient. The result must be corrected
for the permutations of th-added j unit elements between themselves, this
is done by the factorial term 1/j!.

10.7 Classification According to Two Vectors

All points in the partition diagrams of the simplices were divided into the
orbits. They were classified according to the size of the largest vector. It
is possible to count points and strings according to the size of one specific
vector. This can be done for more vectors simultaneously, conveniently only
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for two vectors, when the classification is planar. We abandon the spherical
perspective and scan a simplex according to two axis. As an example we
show the classification of the triangle 33

mb 0 1 2 3 σ
ma = 0 c3 3bc2 3b2c b3 8

1 3ac2 6abc 3ab2 12
2 3a2c 3a2b 6
3 a3 1
σ 8 12 6 1 27

For (4, 4) simplex the following scheme is obtained similarly

mb 0 1 2 3 4 Σ
ma = 0 16 32 24 8 1 81

1 32 48 24 4 108
2 24 24 6 54
3 8 4 12
4 1 1
Σ 81 108 54 12 1 256

The zero row and column correspond to simplices 34, their crossection
s00 and diagonal to 24. The elements are calculated as products of two
binomial coefficients and corresponding the powers(

ma + mb

ma

)(
m

ma

)
(n− 2)m−ma−mb . (10.15)

The row and column sums of two vector schemes give the one vector
classification (

m

ma

)
(n− 1)m−ma . (10.16)

10.8 Falling and Rising Factorials

In (10.6) a ratio of two factorials i!/(i− j)! appeared. It was obtained from
the corresponding binomial by multiplying it with the factorial j!. This
ratio is known as the falling factorial and it is noted as (n)k. The meaning
of this notation of the falling factorial is that it is the product of k terms
(n− k), k going from 0 to (k − 1). When we arrange falling factorials into
the Table 10.7 the falling factorial has a very simple inverse matrix.

The falling factorials can be obtained formally from the binomial
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Table 10.7: Falling factorial and its inverse matrix.
k 0 1 2 3 4 5 0 1 2 3 4 5

m=0 1 1
1 1 1 -1 1
2 2 2 1 -2 1
3 6 6 3 1 -3 1
4 24 24 12 4 1 -4 1
5 120 120 60 20 5 1 -5 1

(k! + 1)n substituting for k!j = j! . (10.17)

We have mentioned the problem of distinguishability of things in distri-
butions of things into distinguishable boxes. The distribution of the undis-
tinguishable things, obtained as a sum of the polynomial coefficients for
n permutations, led to the binomial coefficient

(
m+n+1

m

)
. Then we divided

m ones into m rows and obtained the polynomial coefficient for m permu-
tations, because these ones were equivalent. The sum of products of both
coefficients gave nm. Now we add the third index k. We can distinguish,
if on the row i in the column j is 1α or 1β . There appears constant num-
ber m! of permutations of m objects for all points counted by the sum of
polynomial coefficients for n permutations. The result is∑

k≥0

m!n!/
∏

nk! = (m + n− 1)!/(n− 1)! (10.18)

This identity is known as the rising factorial and the notation (n)m is
used. Both rising and falling factorials are related as

(n + m− 1)m = (n)m . (10.19)

It is possible to define the rising factorial as the falling factorial of
negative numbers

(n)m = (−1)m(−n)m . (10.20)

For example: (n)2 = (n + 2)(n + 1)n = (−1)3(−n)(−n− 1)(−n− 2).

10.9 Matrices NNT

We have already counted quadratic forms NTN. Now we shall study
the other quadratic forms NNT. In them blocks JJT

k obtained as outer
products of the unit vector columns Jk appear.
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For example: the block matrix
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1


is permuted as 

1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

 .

These blocks can not distinguish sequences (ababa)T and (babab)T.
They only register that on places 1, 3, 5 one vector was and the other vector
was on places 2 and 4.

The difference between both quadratic forms can be compared to two
observers of trains. NTN is an observer sitting on a train. He registers how
many times his train moved but he can not tell when. NNT is an observer
on rails registering intervals when rails were used but he can not tell by
which train.

The quadratic forms3 NNTare counted by an index known as the Bell
polynomial

m!/
∏
k≥0

nk!mk!nk (10.21)

When we compare it with the product of two polynomial coefficients,
we see that this was divided by the term n!/n0!. This term appeared as
the operand multiplying all Stirling numbers of the second kind to give
differences ∆m0n (Sect. 10.3). Therefore the Bell polynomials are counted
by the Stirling numbers of the second kind and their sums. The number of
quadratic forms NNT is identical with the number of naive matrices in the
lower triangular form without empty intermediate columns.

When the Bell polynomials are compared with the cycle index (7.15),
we see that here instead of the simple m terms their factorials appear.
The elements in columns do not form cycles but undistinguishable subsets.
The Stirling numbers generate differences, if multiplied with the matrix of

3The quadratic forms NNT of long strings form very interesting patterns.
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Figure 10.1: Balloting numbers cone. Coordinates a are always greater
then coordinates b.

u
u uu uu u u
ua

b

forbidden

factorials, and with the matrix of powers, if multiplied with falling factori-
als:

1 1 1 1 1 1 1 1
2 2 2 1 2 3

6 6 2 6
24 6

1 1 1 1 1 1 1 1 1
1 1 1 3 3 3 1 2 3 4
1 3 1 1 7 13 13 1 4 9 16
1 7 6 1 1 15 51 75 1 8 27 64

When the lowest allowable value mj = 2, the polynomials give associ-
ated Stirling numbers of the second kind which recurrence is

aij = jai−1,j + (i− 1)ai−2,j−1 with a00 = 1 . (10.22)

10.10 Balloting Numbers

In Sect. 9.8 the Fibbonacci numbers were introduced with a singular ma-
trix. If we rearrange its elements as in Table 9.7, we obtain a matrix which
can be inverted. The positive numbers of the inverse matrix are known as
the balloting numbers.

Actually, the balloting numbers are all positive. The negative signs
appear by multiplication with I∗ from both sides. They count binary strings
in which one side has always an advantage given by the sieve rule mai ≥ mbi.
The counted strings lead only in a half of the two dimensional cone (Fig.
10.1). The inverse Fibbonacci matrix counts strings which elements are b
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Table 10.8: Fibbonacci and balloting numbers
Fibbonacci numbers Balloting numbers

k 1 2 3 4 5 6 7 1 2 3 4 5 6 7
m=1 1 1

2 1 1
3 1 1 -1 1
4 2 1 -2 1
5 1 3 1 2 -3 1
6 3 4 1 3 -4 1
7 1 6 5 1 -2 9 -5 1

Figure 10.2: Fibbonacci lattice. Odd vectors a are not formed. The Fib-
bonacci numbers count the restricted strings.
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and two consecutive aa = a2. For example: f75 = 5 counts strings b5a2,
b4a2b, b3a2b2, b2a2b3, ba2b4.

The corresponding lattice is depicted on Fig. 10.2. The Fibbonacci
numbers fij are generated by the recursion

f11 = 1; fij = fi−1,j−1 + fi,j−2 . (10.23)

The balloting numbers bij are generated by the recursion

b11 = 1; bij = bi−1,j−1 + bi−1,j+1 . (10.24)

We can formulate also a table, which elements count strings in which
ma ≥ m2

b . Its elements are bij = bi−1,j−1 + bi−2,j , and it is again a rarefied
matrix of binomial coefficients.
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Table 10.9: Differences of binomial coefficients
j 0 1 2 3 4 5

m=0 1
1 2 1
2 4 3 1
3 8 7 4 1
4 16 15 11 5 1
5 32 31 26 16 6 1

The inverse matrix with positive signs is

1 2 3 4 5 6 7 8 9
n=0 1

1 1
2 1
3 1 1
4 2 1
5 3 1
6 3 4 1
7 7 5 1
8 12 6 1

The matrix elements, the numbers bij , are generated by the recursion

b11 = 1; bij = bi−1,j−1 + bi−1,j+2 . (10.25)

They count strings with the elements a3, and b.

10.11 Another Kind of Differences

For all points (elements) of space we can measure distances (differences)
from the other points. These distances are induced by their special func-
tions. As an example we introduce differences [2m + 1]−

(
m
j

)
tabulated in

Table 10.9. The inverse matrix has elements as in Table 10.10.
When we do not consider the signs (−1)m+j , the squares of (m− 1) are

in the third column, in the second column its first differences (m+1)2−m2

and in the first column its second differences which are from the second row
up constant. The higher column elements are differences of the elements of
the previous columns

mij = mi−1,j−1 −mi−1,j , (10.26)
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Table 10.10: Differences of m2

j 0 1 2 3 4 5
m=0 1

1 -2 1
2 2 -3 1
3 -2 5 -4 1
4 2 -7 9 -5 1
5 -2 9 -16 14 -6 1

Table 10.11: Lah numbers L
n 1 2 3 4 5 Σ

m=1 1 1
2 2 1 3
3 6 6 1 13
4 24 36 12 1 73
5 120 240 120 20 1 501

similarly as all sums in the matrix of binomial coefficients.
Another possible decomposition of the Table 10.10 is on the sum of two

tables of binomial coefficients Bm,j + Bm−1,j−1.
Such difference tables can be constructed for any powers of consecutive

numbers. Their inverse matrices have no simple interpretation as differences
of squared numbers.

10.12 Lah Numbers

It is difficult to show all relations between all space functions. The Lah
numbers L are introduced simply by their Table 10.11.

Actually, the original Lah numbers L have odd rows negative signs and
then

L2 = I; or L−1 = (−1)i+jL . (10.27)

The elements of the Table 10.11 are direct products of falling factorials
with the binomial coefficients

lij = i!/j!
(

i− 1
j − 1

)
. (10.28)

The recurrence of the Lah numbers is
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Table 10.12: Differences as product S2S1.
n 1 2 3 4 5 Σ

m=1 1 1
2 2 1 3
3 6 6 1 13
4 26 36 12 1 75
5 150 250 120 20 1 541

li+1,j = (i + j)lij + li,j−1 (10.29)

Another possibility to produce the Lah numbers, is the product of ma-
trices of Stirling numbers of both kinds. The matrix of the Stirling num-
bers of the second kind is multiplied by the matrix of the Stirling numbers
of the first kind from the right:

L = S1S2 . (10.30)

Due to the relations of both kinds of Stirling numbers the inverse of the Lah
matrix is identical with the matrix itself.

The transposed order of the Stirling numbers multiplication gives an-
other Table 10.12, this time of differences ∆(n)nn

Multiplying the matrix of the Stirling numbers of the first kind by the ma-
trix of the Stirling numbers of the second kind gives the same result as
the permutations of columns of the naive matrices in the lower triangular
form with j columns with nonzero elements by the permutation matrices
P with i rows and columns and j cycles. The arrangement assures that
empty columns are not permuted from their position. The Table 10.12
counts strings according to the number of columns in the lower triangular
form, which were not permuted from their positions. The elements of its
first column are, except the first element, 2∆n−10n−1. There are counted
matrices in the lower triangular form with the leading first element a and
the second element either a or b.
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Chapter 11

Multidimensional Cubes

11.1 Introduction

As an introduction to this chapter, we repeat some of the facts about cubes,
which were already explained previously. We used as the generating func-
tion of the powers of vector sets (Σej)m. We obtained vector strings N
leading to the points on the planes orthogonal to the unit diagonal vector
I. We found mathematical operations which arranged these matrix vectors
N onto spherical orbits and mentioned some possibilities to form from the
plane simplices their complexes, that is the positive cones in vector space.
We have also shown that cubes or generally any parallelepipeds are formed
from plane complexes by truncating too long vectors. The traditional ap-
proach, the Cartesian product of n one dimensional complexes gives only
points, no vector strings

(1+a+a2)×(1+b+b2) = 1+a+a2 +b+ab+b2 +a2b+ab2 +a2b2 . (11.1)

These n dimensional cubes are formed usually by the Cartesian products
of n one dimensional complexes, For example:

(1+a+a2)×(1+b+b2) = 1+(a+b)+a2+ab+b2+a2b+ab2+a2b2 . (11.2)

The first three simplices are complete, but the last two are truncated.
Moreover, not all strings are produced. Now we will treat cubes systemat-
ically. Especially we will show how the vector strings are transformed into
points of cubes and points of plane simplices into orbits. This transforma-
tion is possible by interpretation of the transposed naive matrices NT as

159
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faces (Fig. 1.4), the vectors determining the coordinates of the points in
m dimensional space. Each vector string corresponds to one point and all
strings of the plane simplex nm are mapped onto points of m dimensional
cube which side is (n − 1). This transformation is not a simple task. It
can be demonstrated on mapping a 3 dimensional plane onto 4 dimensional
cube with the sides 0-2.

Moments: 0 1 2 3 4 5 6 7 8 Σ
Plane strings: b=0 1 4 6 4 1 16

1 4 12 12 4 32
2 6 12 6 24
3 4 4 8
4 1 1

Cube points: Σ 1 4 10 16 19 16 10 4 1 81

The strings from different orbits are counted together because they have
equal moments. New orbits go from 0 to m(n−1). Some of the known func-
tions receive a new interpretation, but it still will be necessary to introduce
some new functions.

For plane simplices we have introduced differences which have some-
what curious properties. They include one vertex, one incomplete edge,
one incomplete side. But when we transpose the naive matrices N and
interpret them as faces, we see, that these properties mean that the differ-
ence of a cube is occupied by its points touching its surfaces nearest to the
center of the coordinates, having at least one coordinate zero, at least one
coordinate one and so on in the higher dimensional cubes (Fig. 11.1).

11.2 Unit Cubes

The unit cubes are most instructive to start with. They have n sides and on
each side there are just two points, 0 and 1. They are generated by the func-
tion

n∏
j=1

(1 + ej) = 2n . (11.3)

For example, for n = 3 we get points: 1, a, b, c, ab, ac, bc, abc (Fig. 11.2).
One from the most interesting properties of the unit cubes, in which only
whole coordinates are allowed, is that they are formed only by a surface.
There is no point inside them representing their center.
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Figure 11.1: Difference of the three dimensional cube with the sides 0 −
2. The difference is made from points touching the surfaces of the cube
nearest to the center of coordinates. The points of the difference have the
coordinates (permuted): (0, 0, 0), (0, 0, 1), (0, 1, 1), and (0, 1, 2).
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Figure 11.2: Three dimensional cube with the sides 0-1.
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Table 11.1: Strings of unit cubes F.
k 0 1 2 3 4 5 Σ

m=0 1 1
1 1 1 2
2 1 2 2 5
3 1 3 6 6 16
4 1 4 12 24 24 65
5 1 5 20 60 120 120 326

There are (m + 1) partition orbits in the unit cubes, from each plane
simplex there is just one orbit. The number of points on each orbit is
determined by the corresponding binomial coefficient. What remains to be
determined is the number of strings in the unit cubes, but we have studied
even this function, and this number is given by the falling factorial (i)(i−j).
We will look on it again. We write it in the inverse order against the Table
11.1

The elements of the Table 11.1 fij are obtained as the product of the
binomial matrix B and the diagonal matrix of factorials ∆(j!):

F = B∆(j!) . (11.4)

We can choose k objects (vectors) from n objects and then to permute
them. This is done as the formal binomial, when consecutive factorials are
treated as powers

(n)m = [(k)i + (n− k)i]m where (k)j
i = (k)j . (11.5)

For example: if n = 5,m = 3, and we choose k = 2, the result is

(5)3 = 60 =
(

3
0

)
(2)3(3)0 +

(
3
1

)
(2)2(3)1 +

(
3
2

)
(2)1(3)2 +

(
3
3

)
(2)0(3)3 =

1× 0× 1 + 3× 2× 3 + 3× 2× 6 + 1× 1× 6 .

It counts 18 permutations of strings with two symbols, say

a, b : 6(abc, abd, abe) ;

36 permutations with either a or b: 6(acd, ace, ade, bcd, bce, bde), and
6 permutations of the string cde. (2)3 = 0; it is not possible to form a
sequence of three symbols from only two symbols. The row sums are given
simply as



11.3. PARTITION ORBITS IN CUBES 163

Sm = m(Sm−1) + 1 . (11.6)

It is possible to add a new object to the preceding strings in m ways,
except the zero string. Another possibility to obtain the matrix 11.1, is to
multiply the matrix of rencontres numbers R (Table 7.3) with the matrix
of the binomial coefficients

F = RB . (11.7)

Otherwise, the strings of the unit cubes are generated similarly as the
factorials from subfactorials by the Apple polynomial D. Here it is the
polynomial of the second order, (D + 2)2, For example:

44 + 5× 9× 2 + 10× 2× 4 + 10× 1× 8 + 5× 0× 16 + 1× 1× 32 = 326 .

It is well known, that in Nature many events are described by the bino-
mial distribution. When you toss n coins simultaneously, then the results
will fill vertices of the unit cube evenly, especially if the experiment is re-
peated many times. At least that is what the probability theory supposes.
Less known is the derivation of another statistics generated by the unit
cubes. Suppose that we are registering accidents. Let us have Sm persons
with at most m accidents and the mean accident rate 1 per person. At
such conditions, we choose as the registration tool strings of k ones from
m symbols if the other m− k places are exploited for indexing the persons.
Such a register will have the following capacity: There will be m! persons
with no accident, m! persons with one accident, m persons with (m − 1)
accidents, and at last only one person with m accidents. Such distribution
of accidents is known as the Poisson distribution. It is applied usually to
low accident rates and it is then necessary to change the conditions. Nev-
ertheless, if Einstein said that God does not play dice, we can say, that
he himself is the Dice. The tossing of coins or dices models only the ideal
space.

11.3 Partition Orbits in Cubes

The partition orbits in cubes correspond to points of plane simplices. Thus
we know their total number. We have also shown above, how differently
these points are mapped on the plane simplices and the cubes. We already
found that counting of the orbits is very simple in the unit cubes.
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Table 11.2: Partition orbits in cubes 0-2
k 0 1 2 3 4 5 6 7 8 9 10 11 12 Σ

m=0 1 1
1 1 1 1 3
2 1 1 2 1 1 6
3 1 1 2 2 2 1 1 10
4 1 1 2 2 3 2 2 1 1 15
5 1 1 2 2 3 3 3 2 2 1 1 21
6 1 1 2 2 3 3 4 3 3 2 2 1 1 28

Figure 11.3: Formation of three dimensional cube with the side 0-2 from
the square with the side 0-2 (empty circles). The unit three dimensional
cube with the side 0-1 is added (filled circles) and sides are completed.

e
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The partition orbits in the m dimensional cubes which sides are 0-2 are
easily found. The results are given in the Table 11.2. It was shown in Sect.
11.1, how its row m=4 is obtained from points of the plane simplex.

Some properties of the distribution of partition orbits are clear. They
are symmetrical according to the parameter k. This follows from the sym-
metry of the cubes. The number of orbits on planes near to the zero point
does not depend on the dimensionality of cubes and remains constant. It
is determined by the number k and cannot be greater than the number of
unrestricted partitions p(k). If we use the constant c as the length of the
sides of the cubes, the diagonal k is going from 0 to cm.

When we observe row differences in Table 11.3, we see that they are
always 1 on the last (m + 1) occupied places. These numbers are just
the numbers of partition orbits in m dimensional unit cubes. In 3 dimen-
sional space, it can be drawn (Fig. 11.3). To a square with the sides 0-2
the unit three dimensional cube is added, forming the back of the cube
with sides 0-2. The orbit 111 is formed from the orbit 11, which was not
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Table 11.3: Points in cubes with c=2.
k 0 1 2 3 4 5 6 7 8 Σ

n=0 1 1
1 1 1 1 3
2 1 2 3 2 1 9
3 1 3 6 7 6 3 1 27
4 1 4 10 16 19 16 10 4 1 81

in the square, 211 or 221 is obtained from 21, 22 generates 221 and 222.
This suggests the recurrence of the partition orbits. It can be formulated
graphically:

0 < MOMENTS > mc < > m(c+1)
Orbits of m dimensional cube of lesser size (c-1)

Orbits of (m-1) dimensional cube of the same size
Σ: Orbits of m dimensional cube with the size c

Because the cubes are symmetrical along their diagonals, the positions
of the summands can be inverted. For example

1 1 1 1 1 1 1 1
1 1 2 1 1 = 1 1 2 1 1

1 1 2 2 2 1 1 1 1 2 2 2 1 1

Defining the number of orbits p(m,n,c) on the plane m of n dimensional
cube with the side c, we have

p(m,n, c) = p(m, [n− 1], c) + p([m− n], n, [c− 1]) . (11.8)

11.4 Points in Cubes

We know the total number of the points with the natural coordinates (oth-
erwise the volume mn) in the cubes, and now we want to determine their
distribution according to their moments in the plane simplices. If starting
simplices are not truncated, these numbers must be the binomial coeffi-
cients

(
m+k−1

k

)
. Similar numbers appear on the tails of distributions. From

the first cubes with c = 2, the recurrence can be easily deduced the table
11.3, which is known in literature as the trinomial triangle.

Here the recurrence is simple. To each point of a (n − 1) dimensional
cube we add a new side with c points. By adding 0, 1 we simply sum up
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(c + 1) partition orbits of the less dimensional cube. For example the term
19 in the last row is obtained as 6 + 7+ 6. The formula is

cij =
c∑

k=0

ci−1,j−k . (11.9)

A new vector with all its allowed values is added to each partition
on a suitable place.

Another possibility to produce cubes is to increase the size c of the cubes.
The cubes of different dimensions m are multiplied by the transposed matrix
of the binomial coefficients as follows. The number of points of greater cubes
appears on the diagonal

1 1 1 1
1 2 3

1 3
1

1 1 1 1 1
3 1 3 4 5 6
9 3 1 9 12 16 21

27 9 3 1 27 36 48 64

The tree dimensional cube with c = 2 has 27 points. It is transformed
in the dimensional cube with c = 3 by adding 3 × 2 dimensional cubes
(squares), 3 × 1 dimensional cubes (edges) and 1 × 0 dimensional cube,
the point with coordinates (3, 3, 3). The new diagonal elements in the in-
verse order, 64, 16, 4, 1, form the new baseline of the next cube. To increase
the size of the cubes, it is necessary to rearrange the diagonal elements and
repeat the multiplication.

11.5 Vector Strings in Cubes

In Sect. 11.2, we have shown that in the unit cubes the strings are counted
by the falling factorials. For other cubes the numbers of strings are not de-
termined as easily, but it is not as that difficult, if we make it consecutively.
For example: for c = 2 we obtain the Table 11.4.

To show how the elements of the Table 11.4 are generated, the result
for s45 is given: 600 = 90 + 5 × 54 + 10 × 24. We obtained the points in
the cubes by summing (c + 1) elements of the less dimensional cube (11.9).
In this case it is necessary to permute added symbols with symbols of the
corresponding strings with (n − 1) symbols. This is done by multiplying
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Table 11.4: Vector strings in cubes with c=2
m 0 1 2 3 4 5 6 7 8 Σ

n=0 1 1
1 1 1 1 3
2 1 2 4 6 6 19
3 1 3 9 24 54 90 90 271
4 1 4 16 60 204 600 1440 2520 2520 7365

Table 11.5: Strings in 2 dimensional Cubes.
k 0 1 2 3 4 5 6 7 8 Σ

c=0 1 1
1 1 2 2 5
2 1 2 4 6 6 19
3 1 2 4 8 14 20 20 69
4 1 2 4 8 16 30 50 70 70 201

the corresponding numbers with binomial coefficients. The recurrence is
therefore

sij =
c∑

k=0

(
m

k

)
si−1,j−1 . (11.10)

Another possibility to obtain the greater cubes by increasing the sides
of the n dimensional cubes gives also a possibility for finding recurrent
formulas for the number of strings. For n = 2 (the squares), we obtain the
Table 11.5.

The recurrence is

si0 = 1; sij = si−1,j−1 + si,j−1; sij = 0 outside the cube . (11.11)

There are always two possibilities to prolong the strings, except of
strings leading for the back sides. The first corresponds to the term si,j−1,
the second possibility inside the squares is accounted by counting the strings
from the lesser square si−1,j−1.

It is also possible to shift a cube in its space, when its point with the low-
est moment is not incident with the beginning of the coordinate system.
The number of orbits and points is not changed by this operation, but
the number of strings is.
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11.6 Natural Cubes - e Constant

We have shown that the unit cubes are generated by the formula 1.3.
The term 1 in (1 + ej) was interpreted as e0

j . The volume of a cube de-
pends on its base m and on the its dimensionality n. Now we will study,
what volume e a cube has, if its side nears to one and its dimensionality to
infinity. We try to find what value has the limit

e = lim
z→∞

(1 + 1/z)z . (11.12)

The argument in the equation 11.6 can be either positive or negative.
The base of e cube lies between cubes with whole numbers 1 < (1 +

1/z) < 2. When z = 1, the result is 1.5 instead 21. When z = 2, the result
is 1.52 = 2.25 instead 22. Evaluating the binomial development of (11.7),
we obtain inequalities

∞∑
k=0

1/k! < e =
∞∑

k=0

(
z

k

)
1/k! < 1 +

∞∑
k=0

1/2k = 3 . (11.13)

Using sophisticated mathematical arguments, it can be proven that
the number e must be greater than the sum of the inverse factorials. Be-
cause it should be simultaneously smaller, the best solution is the one where
both limits coincide. The constant e is an irrational number and its first
digits are e = 2.71828 . . .. The sum of inverse factorials approaches to the
exact value fast. Thus the first seven terms give

e = 1 + 1 + 1/2 + 1/6 + 1/24 + 1/120 + 1/720 = 2, 71805 .

The next term is 1/5040 = 0.000198. It corrects the fourth decimal
place.

If z is negative, the substitution z = −(t + 1) is inserted into the for-
mula (11.7) and than some modifications show, that again the number e is
obtained:

lim
t→∞

[1− 1/(t + 1)]−(t+1) = lim[t/(t + 1)]−(t+1) = (11.14)

lim(1 + 1/z)t+1 × lim(1 + 1/z) = e× 1 = e .

The generating function of the e cube has some important properties,
which make from it a useful tool. When a substitution x = az is applied,
the limit of the expression
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lim
x→∞

(1 + a/x)x = ea = exp(a) (11.15)

is the a-th power of the number e. This property of the number e is
exploited using e as the base of natural logarithms.

When we return to the function of the rising factorial (10.8) which
counts strings in unit cubes, then the number of all strings in the infinite
unit cube can be expressed using the constant e:

lim
n→∞

n!
∞∑

k=0

1/k! = en! . (11.16)

A note: To paint a half of sides of a cubical canister in infinite dimen-
sional space, more varnish is needed that the volume of the canister is.
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Chapter 12

Matrices with Whole
Numbers

12.1 Introductory Warning

This chapter will remain only sketched. The reason is that it is practically
impossible to treat its content systematically as it was done with naive
matrices. The remaining of the chapter will be exploited for introducing
some matter which belongs to the following Chapters.

12.2 Matrices with Unit Symbols

We started our study with permutation matrices having in each row and
column exactly one unit symbol. Then we added the naive matrices, having
this restriction only for rows and the transposed naive matrices, where it
was applied for columns. The next step is to allow units to be inserted
to any available place of a matrix. We already know, that the number
of these matrices will be determined by a binomial coefficient. For matrices
with m columns and n rows, with k unit elements in the matrix, the number
of the possible configurations will be determined by the binomial coefficient(
mn
k

)
. These configurations can be counted using tables having two parti-

tion orbits in rows as well as in columns. For example: for m = n = k = 4
we obtain Table 12.1.

The Table 12.1 gives some perspective. In the space, new vector strings
appeared. They lead to the same points as the naive matrices, but their
orbits are not simple partition orbits but the pattern orbits which are the

171
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Table 12.1: Distribution of unit matrices m = n = k = 4.
Partition 4 31 22 211 1111 Σ
NT N
4 0 0 0 0 4 4
31 0 0 0 144 48 192
22 0 0 36 144 36 216
211 0 144 144 720 144 1152
14 4 48 36 144 24 256
Σ 4 192 216 1152 256 1820

products of two partitions, one for rows and the other one for columns.
For example, the pattern produced by the partition product (211×310)

is  1 1 1
1 0 0
0 0 0

 .

This is a Ferrers graph. There are 6 possible permutations of the rows of
this pattern (all rows are different) which are combined with permutations
of the fourth zero row. Two columns are equal. Thus there are 3 possible
permutations which are combined with permutations of the fourth zero
columns.

The partition product (211× 211) has two patterns: 1 1 0
1 0 0
0 0 1


with all possible 36 = 3! × 3! permutations of rows and columns, and

the second one  ∗ 1 1
1 0 0
1 0 0


with 9 permutations of the zero element marked by *. Unit elements

fill only the marked row and column. These permutations of patterns are
multiplied respectively by 16 permutations of the fourth row and column
with zero elements. It is easy to count all permutations to a given pattern,
but it is more difficult to find all patterns generated by the given partition
product.
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Table 12.2: Matrices with elements ≥ 1
Partition 4 31 22 211 1111 Σ

4 16 48 24 48 0 136
31 48 288 144 288 0 768
22 24 144 72 144 0 384

211 48 288 144 288 0 768
Σ 136 768 384 768 0 2056

1111 4 192 216 1152 256 1820
Σ 140 960 600 1920 256 3876

The total number of unit vectors with constant sums is given by the
row or column sums elements of tables similar to Table 12.1. Due to the
difficulties with the notation, we will give the formula only for column
sums, where we can use the symbol ni for the number of identical binomial
coefficients

∑
(n!/

∏
n!)

(
m

kj

)nj

=
(

mn

k

)
;

n∑
j=1

kj = k . (12.1)

The sum is made over all possible partitions. The product of the bi-
nomials is not restricted by any conditions on column sums, and therefore
units in each row can be distributed independently, then the rows obtained
by such a way are permuted (n = m) but n! overestimates permutations of
rows with equal sums, therefore the result must be divided by the partial
factorials.

12.3 Matrices with Natural Numbers

Now the next step seems to be easy. A matrix is a mn dimensional vector
and if k unit elements can be placed in it without any restrictions, the
number of all possible vectors is given by the binomial coefficient (10.2)(
mn+k

k

)
. The Table 12.1 should be completed by 2056 new entries to give(

19
4

)
different matrices instead

(
16
4

)
matrices with the unit elements. The

new patterns fill the Table differently, see the Table 12.2
It is practically impossible to follow all possible patterns of matrix vec-

tors as we did before. One special class of them was studied systematically,
matrices having in each row exactly two unit symbols. These patterns de-
veloped into a special branch of mathematics, the graph theory (see the
next Chapter).
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In the previous Chapters we have counted the partition vectors, that
is the number of the Ferrers graphs. This is simultaneously the number
of the diagonal patterns corresponding to quadratical forms of the naive
matrices. This patterns can be compared with the symmetrical unit pat-
terns of JJT

j matrices with mj elements, which is the pattern of the number
Σm2

j .

12.4 Interpretation of Matrices with Natural
Numbers

If a diagonal matrix is projected onto the unit vector row JT, the result
is a row vector corresponding to a vector row of generalized matrices with
natural numbers. It is thus possible to write such a matrix as a string of
projections of quadratic forms of naive strings onto the consecutive unit
vector rows.

(JT
1 NT

1 N1, JT
2 NT

2 N2, JT
3 NT

3 N3)T . (12.2)

Another possibilities will be shown later. We can interpret a matrix M
together with its transpose MT, taken in the block form(

0 MT

M 0

)
,

as an adjacency matrix A of a bipartite graph with multiple edges (see
the next Chapter).

12.5 Coordinate Matrices

We interpreted rows in matrices as strings of consecutive vectors. There
exist still another explanation. The rows are just simultaneous vectors
determining positions of different points or objects. The matrix(

1 0
1 0

)
gives for two different points (or objects) the same address. This is

possible, if the address (1, 0) is For example: a house or a box. Thus it
is necessary to study the possibility that matrices define positions of m
points in space, that they are lists of coordinates in orthogonal axes. Such
a list forms the coordinate matrix C which elements cij are coordinates of
m points (vertices, objects) i on n axes.
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The matrix column A

(0, 1, 2, 3, 4)T

determines coordinates of five points lying on the natural number axis.
Between all points unit distances are.

The matrix B

(
0 1 2 3 4
0 1 2 3 4

)T

determines coordinates of five points rotated into two dimensional plane.
Another straight configuration of five points C is the plane simplex

(
0 1 2 3 4
4 3 2 1 0

)T

.

These are examples of the simplest regular structure of five points,
evenly spaced straight chain.

If the quadratic forms CCT of coordinate matrices are calculated, they
have on their diagonals squared Euclidean distances of each point from the
center of the coordinate a system

A
0 0 0 0 0
0 1 2 3 4
0 2 4 6 8
0 3 6 9 12
0 4 8 12 16



B
0 0 0 0 0
0 2 4 6 8
0 4 8 12 16
0 6 12 18 24
0 8 16 24 32


C

16 12 8 4 0
12 10 6 3 0
8 6 4 2 0
4 3 2 10 0
0 0 0 0 16


Off-diagonal elements are quadratic products of both distances i and j.
Coordinates of points form structures in space. If the chain is flexible,

it can be wound over edges on the unit cube
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D
0 0 0
1 0 0
1 1 0
1 1 1

 .

Here the four points are placed on the vertices of the three dimensional
cube. Another configuration is

E
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Here all four coordinates in the first column are zeroes. They can be
thus neglected. The first point lies in the center of the coordinate system,
the second one on the end of the second unit vector, the third one on the end
of the third unit vector. The points are related as in the three dimensional
plane complex. The distances between them are not equal. The first point
is in the unit distance to the other three points, the distances between these
three points are doubled.

The configuration of four points determined by the coordinate matrix

F
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


corresponds to the regular tetrahedron. The chain is wound over its

vertices.

12.6 Oriented and Unoriented Graphs as Vec-
tor Strings

If we draw the difference of two vectors (eb − ea), as on Fig. 3.2, it corre-
sponds to the accepted convention for drawing arcs of oriented graphs (see
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Figure 12.1: Two diagonal strings in three dimensional cube 0−−2. Find
the remaining four.

u
u

u u

u
u

next Chapt.). The incidence matrix S of a graph is just the difference of
two naive matrices

S = Na −Nb ,

as it was shown in Sect 3.3. It is an operator which transfers a vector
string into another. A vector string is a continuous path in the vector space,
the operator transferring one vector string into another is also continuous.
It seems to be the area between two strings or vector lines, and we could
imagine it as a surface. But when we make consecutive differences at all
pairs of unit vectors, we get a linear vector again. A loop transfers a unit
vector into itself. All these vectors lie in the plane orthogonal to the unit
diagonal vector I.

The other possibility, how to interpret oriented graphs is the difference
inside a string itself. For example, a string abcda contains transitions a
into b, b into c, c into d and d into a. The difference is thus:

a → b
b → c

c → d
d → a

.

Similarly differences at higher distances could be compared.
The oriented complete graphs Kn form 2 dimensional edges (known

as arcs) of the plane simplices. Unoriented graphs are strings of vectors
orthogonal to surfaces of corresponding oriented graphs. The unoriented
complete graphs Kn are vector strings going from the coordinate center to
the farthest end of the unit cube which sides are diagonals of the n dimen-
sional unit cube, or otherwise, to the farthest end of the cube with the side
0-2, as it is shown on Fig. 12.1. Another graphs correspond to multisets
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from these bases, defined as differences or sums of naive matrices. Edges
and arcs of graphs form a space which symmetry is more complicated that
the symmetry of naive matrices.

The recursive definition of the canonical form of the incidence matrix S
of the complete oriented graph Kn is(

Sn−1 0n−1

−In−1 Jn−1

)
, (12.3)

where 0n−1 is the zero vector-column. Similarly, the canonical form of
the complete unoriented graph Kn is(

Gn−1 0n−1

In−1 Jn−1

)
. (12.4)

12.7 Quadratic Forms of the Incidence Ma-
trices.

A simple exercise in matrix multiplication shows that the quadratic forms
of the incidence matrices of unoriented and oriented graphs have the form

(NT
a + N)Tb (Na + Nb) = (NT

a Na + NT
b Nb) + (NT

a Nb + NT
b Na) (12.5)

(NT
a −N)Tb (Na −Nb) = (NT

a Na + NT
b Nb)− (NT

a Nb + NT
b Na) (12.6)

The quadratical forms are composed from two parts: The diagonal ma-
trix V formed by the sum of quadratic forms of the two naive matrices Na

and Nb. The diagonal elements vj are known as degrees of the correspond-
ing vertices.

The sum of scalar products

(NT
a Nb + NT

b Na)

forms the off-diagonal elements. It is known as the adjacency matrix
A of a graph. Its elements aij show which vertices are adjacent and in
multigraphs how many lines connect both vertices. For it is necessary to
have in the incidence matrix identical unit rows or one row with square
root of the multiplicity of the line.

The diagonal matrix V and the adjacency matrix A can be obtained
as the sum or the difference, respectively, of quadratic forms of unoriented
and oriented graph
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Figure 12.2: Decomposition of quadratic forms STS and GTG into the
diagonal vector V and the adjacency matrix vector A. STS and GTG are
orthogonal.

k 36
-�

STS -A V A GTG

u
0

V = 1/2(GTG + STS) (12.7)

A = 1/2(GTG− STS) (12.8)

The relation of both quadratic forms is shown schematically on Fig
12.2. The Hilbert length of the diagonal vector V is 2m, twice the number
of rows in the incidence matrices. The adjacency matrix vector A has the
same length and it is opposite oriented in both quadratic forms, thus STS
and GTG end on different planes. If the graph is regular, vj = const, then
the diagonal matrix V is collinear with the unit diagonal vector I and the
adjacency matrix A has the same direction, too.

The diagonal elements of the adjacency matrix A are zeroes. It is
therefore possible to use them inconsistently for noting loops of a graph
with loops. At oriented graphs rows corresponding loops are zeroes. But
at unoriented graphs, the row corresponding to a loop has value 2, which
gives as the quadratic 4 and using formulas 12.7 and 12.8 the loop value 2
appears automatically.

The other quadratic forms GGT and SST have on the diagonal 2, the
number of unit vectors in the rows of the incidence matrices. This is in
accord with the fact that each line is registered twice in matrix V as well
as in matrix A. Off diagonal elements are ±1, if two lines are adjacent
having a common vertex. The off-diagonal elements form in such a way the
adjacency matrices of line graphs. But at oriented graphs this explanation
is complicated by signs which signs can be positive and negative. This sign
pattern depends on mutual orientation of arcs. It is unpredictable and must
be determined separately.
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12.8 Incidence Matrices of Complete Graphs
Kn as Operators

The unit matrices J (JT) are operators which sum row (or column) elements
of the matrix they are acting on, or transfer them into the resulting vector-
row (or vector-column). In canonical form of incidence matrices of complete
graphs Kn the unit matrices J are combined with the unit matrices I with
the negative signs. The incidence matrices of complete graphs Kn are
frame operators1. The framing operation is applied to quadratic forms of
coordinate matrices twice. At first CCT is framed

S(∗)ST (12.9)

or

G(∗)GT . (12.10)

The result of this operation is the larger matrix with
(
n
2

)
rows and

columns. The elements in the product are differences (sums) of all pairs of
the elements of the framed matrix. The product is split into the diagonal
and off-diagonal parts. The diagonal part is again framed, now in the frame
collapsing diagonal elements back into n dimensional symmetrical matrix

ST(∗)S (12.11)

or

GT(∗)G . (12.12)

This operation forms the second difference (sum) of
(
n
2

)
of the first

differences (sums).
The unit diagonal matrix I gives S(I)ST. This is matrix SST of the

complete graph K4. Four diagonal elements of I exploded into six diagonal
elements of the product. The diagonal elements (2) are differences of the
coordinates (or squared distances, since I = I2) of the four vertices of the
regular tetrahedron. The diagonal elements are rearranged back into four
dimensions as in 12.11 or 12.12.

1It is curious that such elementary things can be discovered at the end of the twenties
century. Maybe they were just forgotten.
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12.9 Blocs Schemes

As we said it is possible to study systematically matrices with an arbi-
trary number of unit elements in a row. For practical reasons, this number
must be constant, otherwise only special configurations were accessible for
calculations. From matrices having k unit elements in each row, only ma-
trices having specific properties corresponding to properties of complete
graphs were studied. Such matrices are called block schemes B and give
the quadratic forms

BTB = (l − r)I + rJJT , (12.13)

where r is the connectivity of the block. Sometimes there is posed a
stronger condition on block schemes, their matrices must be the squared
ones and their both quadratic form equivalent

BTB = BBT . (12.14)

The unoriented complete graph K3 is the block with l = 3, r = 1. The
other Kn are not blocs, since in their GGT appear zero elements.

The equation 12.9 shows that each unit vector ej must appear in the
scheme l-times and each pair of elements r-times. The numbers m, n, k, l
,r are limited by following conditions

mk = nl (12.15)

l(k − 1) = r(n− 1) (12.16)

(12.15) counts the number of units in rows and columns, (12.16) the
pairs in rows mk(k− 1)/2 and in the quadratic form rn(n− 1)/2. Dividing
both sides by l/2, the result is simplified to the final form. The simplest
example of a block scheme is the matrix with m = n = 4, k = l = 3, r = 2:

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 .

Block schemes with k = 3 are known as the Steiner’s 3-tuples. It is clear
that the construction of block schemes and finding their numbers is not a
simple task. If you are interested, the book [8] is recommended .
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12.10 Hadamard Matrices

Another special class of matrices are the Hadamard matrices H with ele-
ments hij = ±1 and quadratic forms

HTH = HHT = nI . (12.17)

It means that all rows and columns of the Hadamard matrices are or-
thogonal. The examples of two lowest Hadamard matrices are:

(
1 1
1 −1

) 
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 .

The Hadamard matrices can be symmetrical as well as asymmetrical.
There exist some rules how it is possible to construct Hadamard matrices
of higher orders. The construction is easy at the 2n dimensional matrices,
where the blocks of the lower matrices can be used as the building stones(

Hn Hn

Hn −Hn

)
.



Chapter 13

Graphs

13.1 Historical Notes

The theory of graphs was formulated, similarly as many other notions in
this book, by Euler. Before the World War II, all graph theory could be
cumulated in only one book. Today, there are numerous specialized journals
dealing with the theory of graphs and its applications.

Euler formulated the basic idea of the graph theory when solving the puz-
zle of the seven bridges in Königsberg (Fig. 13.1). Is it possible to take
a walk over all the bridges, and returning back to the starting place, cross-
ing each bridge only once? Euler has shown that the demanded path exists
only if in all the crossing points of the roads even number of the roads meet.
Three roads intersected in some crossing points of the roads in the Euler’s
graph. Thus in Königsberg a simple path was impossible.

One wonders if such a configuration of bridges were in Athens, its
philosophers on their promenades were interested in such trivial problems
and if they have solved it similarly as Euler did, for all similar configura-
tions of ways? Or, was the 7 bridge puzzle not as silly as for children? Some
maturity is needed to be interested in relations which can not be seen but
only imagined?

Till now all problems in this book were solved by multiplication of dif-
ferent possibilities and summing them. Essentially, old Greeks would have
been able to solve them, but they were interested in the geometrical prob-
lems, where the problem and its solution can be seen. The possible answer
to the above question is that the multidimensional spaces are too abstract
to start with.

An advantage of the graph theory is that the graphs connect abstract

183
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Figure 13.1: Seven bridges in Königsberg and the Euler’s graph solution of
the puzzle.
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notions with concreteness. They can be drawn on paper and inspected con-
secutively as a system of points and lines. But this simplicity is deceiving.

Graphs are usually considered to be a binary relation of two sets, the
vertices and the edges or arcs, see Fig. 3.2. It is possible to define a theory
of anything and there appeared very interesting problems suitable to be
studied by young adepts of academic degrees, as For example: the game
theory. But some graph problems found very soon practical applications
or analogies in physical sciences. Especially chemistry gave many impe-
tuses for utilization of graph theory because the graphs were found to be
adequate models of connectivities of atoms in molecules. It seems to be
unsubstantial to study walks between vertices of graphs but when these
walks are connected directly with complicated measurable physical proper-
ties of chemical compounds, as the boiling point is, then such theoretical
studies become pragmatical, and give us a deep insight into how our world
is constructed.

Graphs were connected with many different matrices: Incidence matri-
ces S and G, adjacency matrices A, distance matrices D and other kinds of
matrices. All these matrices were used for calculations of eigenvalues and
eigenvectors, but the different matrices were not connected into an uni-
fied system. Mathematicians were satisfied with the fact, that all graphs
can be squeezed into three dimensional space and mapped onto two dimen-
sional paper surface. They ignored the problem of dimensionality of graphs.
Different authors considered them to be dimensionless objects, one dimen-
sional objects, two dimensional objects. According to the Occam’s razor,
there should not be introduced more factors than necessary to explain ob-
served facts. But treating graphs as multidimensional vectors with special
configurations unifies the theory, graphs are just a special class of vectors,
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Figure 13.2: Examples of unoriented graphs. A – a tree, B – a cycle graph,
C – a multigraph.
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sums, or differences of two vector strings. These vectors belong into the
vector space. Properties of sums or differences of two vector strings can be
studied conveniently if they are imagined as graphs, compared with existing
objects, or at least with small samples of larger structures.

13.2 Some Basic Notions of the Graph The-
ory

The graph theory has two basic notions. The first one is the vertex which
is usually depicted as a point, but a vertex can be identified with anything,
even with a surface comprising many vertices, if the graph theory is applied
to practical problems. The second notion is the line representing a relation
between two vertices. Lines can be oriented, as vectors are, going from
a vertex into another, then they are called arcs, and/or unoriented, just
connecting two vertices without any preference of the direction. Then they
are called edges (Fig. 3.2).

An arc is represented by a row of the incidence matrix S formed by
the difference of two unit vectors (ei − ej). According to our convention,
both vectors act simultaneously and the beginning of the vector can be
placed on the vertex j. The resulting arc vector goes directly from the
vertex j into the vertex i. An edge is depicted as a simple line connecting
two vertices. Actually the sum of two unit vectors is orthogonal to the line
connecting both vertices. It is more instructive to draw an unoriented graph
with connecting lines. Nevertheless, for formal reasons we can consider an
unoriented graph as a string vectors where each member is orthogonal to
its oriented matching element. When the oriented graph is a vector, then
the unoriented graph must be a vector, too.
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Figure 13.3: Graph and its line graph.
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A special line in graphs is the loop which connects a vertex with itself.
Formal difficulties appear, how to connect oriented loops with matrices,
because corresponding rows are zero (ej − ej) = 0. These complications
are resulting from the higher order symmetries. An unoriented loop has a
double intensity

(ej + ej) = 2ej , (13.1)

and we will see later, how this fact can be exploited.
Relations between things can be things, too. For example: in chem-

istry, if we identify atoms in a molecule with vertices, then bonds between
atoms, keeping the molecule together, and determining the structure of the
molecule, are bonding electrons. The forces between the nuclei and the
electrons are modeled by graphs if into each connecting line a new vertex
is inserted and so a subdivision graph is formed. Each line in the graph
is split into a pair of lines. The generated subdivision graph has (n + m)
vertices and 2m lines.

We can construct a line graph 13.3, changing lines into vertices, and
introducing new incidences defined now by the common vertices of two
original lines. If the parent graph had m edges, the sum of its vertex
degrees vj was 2m. Its line graph has m vertices and the sum of its vertex
degrees vi is

Σ(v2
j − vj) . (13.2)

A pair of vertices can be connected by more lines simultaneously. Then
we speak about multigraphs (13.2, C). Next step is to consider the parallel



13.2. SOME BASIC NOTIONS OF THE GRAPH THEORY 187

Figure 13.4: Restriction of a graph. Vertices in the circle A are joined into
one vertex a.
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lines as one line with the weight k. It is obvious that the lines need not
to be weighted by whole numbers but any weights wij can be used. From
calculations emerge even graphs with imaginary lines.

It is also possible to restrict the graphs by grouping sets of vertices into
new vertices and leaving only the lines connecting the new set vertices (Fig.
13.4). This operation simplifies the graph.

Both elements of the graphs can be indexed (labeled) and unindexed
(unlabelled). Usually only vertex labeled graphs are considered. Labeled
graphs are sometimes only partially indexed graphs, when only some of their
vertices are indexed, or equivalently, several vertices have equal indices.
When one vertex is specially labeled, we speak about the root.

A special labeling of graphs is their coloring. A task can be formulated
to color the vertices in such a way that no incident vertices had the same
color. The number of colors indicates the parts of the graph where all
vertices are disconnected. No line exists between them. The least number
of colors which are necessary to color a connected graph is 2. Then we
speak about bipartite graphs. For coloring of the planar graphs (cards),
which lines do not intersect, we need at least four colors.

Bipartite graphs have an important property, their incidence matrices
can be separated into two blocks and their quadratic forms split into two
separate blocks.

Graphs are connected, if there exists at least one path or walk between
all pairs of vertices. It is uninterrupted string of lines connecting given
pair of vertices. Mutually unconnected parts of a graph are known as its
components. At least (n − 1) lines are needed to connect all n vertices of
a graph and n lines to form a cycle. Connected graphs with (n − 1) lines
are known as trees (13.2), and they are acyclic. A graph formed from more
trees is the forest.
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Figure 13.5: Decision tree. The left branch means 1, the right branch means
0. The root is taken as the decimal point and the consecutive decisions
model the more valued logic.
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We can find the center of a graph, determined as its innermost vertex,
or the diameter of a graph, as if they were some solid objects. But there
appears some difficulties. When we define the center of a graph as the
vertex which has the same distance from the most distant vertices, then in
linear chains with even number of vertices For example: in the linear chain
L6 u u u u u u

we have two candidates for the nomination. It is better to speak about
the centroid or the central edge. Some graphs have no center at all.

To introduce all notions of the graph theory consecutively in a short
survey is perplexing. But it is necessary to know some terms.

The linear chains Ln are a special class of trees which all vertices except
two endings have the degree vj = 2. The vertex degree counts lines inci-
dent to the vertex. Linear chains have the longest distance between their
extremal vertices and the greatest diameters from all graphs. Another ex-
tremal trees are the stars Sn. All (n− 1) of their vertices are connected to
the central vertex directly. The diameter of stars is always 2. The decisive
trees are trees with one vertex of the degree 2 and all other vertices with
degrees 3 or 1. If the vertex of the degree 2 is chosen as the root (Fig. 19.3)
then on a walk it is necessary to make a binary decision on each step which
side to go. The vertices with degrees 1 are known as the leaves. They are
connected by the branches to the stem of the tree. We already know the
decision trees as strings in the unit cubes. In a tree, they are joined into
bifurcating branches. The indexing of the leaves is known as the binary
coding.

The complete graph Kn has n(n-1)/2 lines which connect mutually all
its vertices. Its diameter is 1 and it has no center. The complement G of a
graph G is defined as the set of lines of the graph G missing in the complete
graph Kn on the same vertices, or by the sum
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Kn = G + G . (13.3)

It follows, that the complementary graph of the complementary graph
G is the initial graph G and that the complementary graph Kn of the
complete graph Kn is the empty graph Gn with no lines.

13.3 Petrie Matrices

The arcs of the oriented graphs were defined as the differences of two unit
vectors (ej − ei). There is another possibility of mapping arcs and edges
on matrices with the unit elements.

An arc is identified directly with the unit vector (ej or with a contin-
uous string of the unit vectors ej . Such matrices are known as the Petrie
matrices1 Pe.

The Petrie matrices are equivalent to the incidence matrices. A row
containing a continuous string of unit symbols corresponds to each an arc
of the incidence matrix without an interruption. The string of unit symbols
in a Petrie matrix Pe going from i to (p-1) corresponds to the arc between
vertices i and p. The arc 1-2 is represented in a Petrie matrix by one unit
symbol, the arc 1-6 needs 5 unit symbols.

The canonical forms Pe and S of K4 are

Pe
1 0 0
1 1 0
0 1 0
1 1 1
0 1 1
0 0 1



S
−1 1 0 0
−1 0 1 0
0 −1 1 0
−1 0 0 1
0 −1 0 1
0 0 −1 1

 .

Petrie matrices have two important properties:
1. A Petrie matrix Pe of a graph G multiplied by the incidence matrix

S of the linear chain L gives the incidence matrix of the given graph:

S(G) = Pe(G)S(L) . (13.4)

From the consecutive units in a row of the Petrie matrix only the first
and the last are mapped in the product, all intermediate pairs are anni-
hilated by consecutive pairs of unit symbols with opposite signs from the

1There is not enough of simple symbols for all different matrices.
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incidence matrix of the linear chain, which vertices are indexed consecu-
tively: 1− 2− 3− . . .− n. For example

1 1 0 0
0 −1 1 0
0 0 −1 1

1 0 0 −1 1 0 0
0 1 0 0 −1 1 0
0 0 1 0 0 −1 1

−1 1 0 0
0 −1 1 0
0 0 −1 1

1 0 0 −1 1 0 0
1 1 0 −1 0 1 0
1 1 1 −1 0 0 1

2. Only the Petrie matrices of trees are nonsingular. The trees have
(n − 1) arcs. Therefore their Petrie matrices are square matrices and be-
cause trees are connected graphs, their Petrie matrices are without empty
columns. The importance of this property will be clear in the Chapt. 15.

13.4 Matrices Coding Trees

The Petrie matrices define the trees in space of arcs. The another possibility
of coding trees is in the space of their vertices. There exist the descendant
code matrices and their inverses, showing the relation of vertices as the
relation of children to parents. In the descendant code both ends of arcs
are used, but the vertices on the path only once. Moreover, the root itself
is induced as the element e11 in the first row. The convention is, that the
arcs are always going from the root. The resulting code2 has the matrix
C the lower triangular form and on the diagonal is the unit matrix I. At
trees, the first column is at trees the unit matrix J, but the code allows
forests, too.

The inverses of code matrices C−1 are in the lower triangular form, and
the unit matrices I are on the diagonal. The off diagonal elements are −1
when the vertex j is the child of the vertex i, and 0 otherwise. Since each
child has only one parent, two nonzero elements are in each row, except the
first one, and this part of the matrix is the incidence matrix S of the given
tree. Therefore

(S + e11) = C−1 . (13.5)

The element e11 is the vector going from the origin of the coordinate
system to the vertex 1, or using the graph convention, the arc going from
the vertex 0 to the vertex 1. In this case, the zero column containing one
−1 element is deleted.

2The code matrix C is simultaneously the coordinate matrix.
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For our purposes it is necessary to allow any vertex to become the root
without changing the indexes. For this reason, we define the path matrix
as vertices on the path between the vertex i to the root j. This is only
a permutation of the lower triangular form. For example:

C
0 1 0 0
0 1 0 1
1 1 0 1
1 1 1 1


C−1


0 −1 1 0
1 0 0 0
0 0 −1 1
−1 1 0 0

 .

The permutation of the columns is (3,1,4,2). The row with the unit
element is inserted into the incidence matrix as the second one and all arcs
are going from the vertex 2.

We already applied the code matrix of the linear chain Ln and its inverse
as the operators TT and C−1 in Sect. 4.3. Recall that

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

1 0 0 0 1 0 0 0
−1 1 0 0 0 1 0 0
0 −1 1 0 0 0 1 0
0 0 −1 1 0 0 0 1.

Inspecting it, we see, that C−1 is incidence matrix of the linear chain
L4 which singularity was removed by adding the row with one unit element
111. For such rooted incidence matrices we will use the starred symbol
S∗. Similarly the incidence matrices of all trees can be adjusted. The code
matrices C are just their inverses (S∗)−1.

It seems that the distinction between the Petrie matrices Pe and the code
matrices C is due to the unit column J which transforms (n − 1) square
matrix to n dimensional square matrix. But both sets are different.

The incidence matrices of trees G∗ rooted by the unit column J are
nonsingular and they have inverses G−1 which in their turn are code ma-
trices C of unoriented trees. These code matrices C must contain negative
elements.

For example, for the star we get using the principle of inclusion and
exclusion
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1 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1

1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1 .

The incidence matrices of the unoriented stars S∗ and the oriented stars
G∗ are selfinverse.



Chapter 14

Enumeration of Graphs

14.1 Introduction

We treated enumeration of the naive matrices N in detail. To enumerate
their sums and differences, known as unoriented and oriented graphs, re-
spectively, is more complicated problem. Therefore only some problems of
graph enumeration will be discussed.

14.2 Enumeration of Trees

Acyclic connected graphs, known as the trees, form the base of the graph
space. We explain later why, now we only show some complications of
enumeration of graphs on them, as compared to the naive matrices.

Every tree which vertices are labeled can be connected with a string
of symbols using the Prüfer algorithm: We choose the pending vertex with
the lowest label, mark its neighbor and prune it from the tree (its branch is
cut and discarded). This pruning is repeated till from the original tree only
K2 = L2 remains. In such a way we obtain a string of (n− 2) symbols. If
all n vertices of the original tree had a specific label, then there is obviously
nn−2 strings corresponding to all possible labeling of trees. For example:
L5 1-5-4-3-2 gives 5,3,4, L5 2-1-4-3-5 gives 1,4,3. The sequence 4,4, 4 is
obtained by pruning the star S5 rooted in 4.

These strings can be counted by a modified Equation 10.2. A tree has
(n − 1) edges and the sum of vertex degrees vj is

∑
vj = 2(n − 1). The

least possible vertex degree of pending vertices is 1. n vertex degrees are
bounded, therefore only (n−2) units can be partitioned in trees. Therefore,
we get

193
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Figure 14.1: The smallest pair of graphs on the same partition orbit (A
and B) and the graph with a central edge (C).
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Number of trees = nn−2 =
∑

(n!/
∏
k

nk!)([n−2]!/
∏
k

(vk−1)nk . (14.1)

The sum is made over all partitions of (n−2) into n parts and vk replaces
mk.

The equation 14.1 counts trees successfully, but there appears one in-
convenience: Different types of trees are counted together when they have
the same partition structure. The partition orbits split in the graphs into
the suborbits. The smallest pair of trees split in such a way, two different
trees on the orbit 322111 are on Fig. 14.1.

The partition orbits are split into the graph orbits with different struc-
tures. Similar vertices of graphs are known as the orbits of a graph. This
use of one notion on different levels is somewhat confusing1.

The tree A on Fig. 14.1 has 5 different orbits and B only 4. The
number of different edges, connecting vertices on different orbits, is lesser
than the number of vertex orbits, except for the symmetric edges connecting
vertices on the same orbit, as the central edge is in C on Fig. 14.1.

We must explain why the partition orbits are important and find tech-
niques how to count the number of unlabelled trees. But before that we
mention another two problems connected with the labeling of trees.

Trees, similarly as other graphs, can be built from trees of lower di-
mensions. If we use the technique of the Young tables, that is inscribing
indices into the Ferrers graphs, we obtain the Young labeled trees. Starting
from K2, there are always (n − 1) opportunities how to attach the n-th
vertex to (n− 1) vertices of trees of the lower level and the number of the

1The Sun has its planets and the planets have in their turn their trabants all with
their own orbits.
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Table 14.1: Trees generated by the polynomial (x(x + m)m−1) and the
inverse matrix

1 2 3 4 5
∑

1 2 3 4 5
m=1 1 1 1
2 2 1 3 -2 1
3 9 6 1 16 3 -6 1
4 64 48 12 1 125 -4 24 -12 1
5 625 500 150 20 1 1296 5 -80 90 -20 1

Young labeled trees must be (n− 1)!. These trees can be compared to the
convolutions.

All trees are generated by the polynomial

x(x + m)m−1 , (14.2)

where m is the number of edges in a tree with (m + 1) vertices. The
powers of x can be interpreted as the number of edges connected to the
added vertex forming the root and the terms of the polynomial at xk can
be interpreted as the number of trees rooted in the n-th vertex having the
corresponding vertex degree k. For example: for m = 4 we get:

64x1 + 48x2 + 12x3 + 1x4 = 125 .

16 trees with 4 vertices are attached to the fifth vertex at 4 different
places This gives the first coefficient. The second coefficient is obtained by
rooting (L3 + K1) = 3× 12 and 2K2 = 3× 4. The last term corresponds to
the star rooted in the fifth vertex.

So we got the new combinatorial identity, which can be tabulated in
Table 14.1 together with its inverse matrix

The elements of the inverse matrix can be decomposed into binomial
coefficients

(
m
j

)
and elements j(i−j). The next row of the inverse matrix is

−6× 1 + 15× 16− 20× 27 + 15× 16− 6× 5 + 1× 1.
For counting unlabelled trees it is necessary to find the number of rooted

trees orbit and the number of the rooted trees with symmetrical edges.

14.3 Symmetry Group of Unoriented Graphs

The incidence matrix G of the complete unoriented graph Kn has n columns
and n(n − 1)/2 rows. In each column there are (n − 1) unit elements and
in each row there are two unit elements. Different combinations of pairs
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Table 14.2: Relation between Sn and Gn groups
Sn group s4

1 s2
1s

1
2 s1

1s
1
3 s2

2 s1
4

P 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0

Initial row GK4 Permuted rows (the index of the original row)
1 1 1 0 0 1 1 2 1 2
2 1 0 1 0 2 3 3 6 4
3 0 1 1 0 3 2 1 1 5
4 1 0 0 1 4 4 6 4 6
5 0 1 0 1 5 6 4 3 3
6 0 0 1 1 6 5 5 2 1
G4 group s6

1 s2
1s

2
2 s2

3 s2
1s

2
2 s1

2s
1
4 .

of the unit vectors correspond to different edges of the graph and can be
indexed consecutively by the index i, going from 1 to n(n− 1)/2.

The incidence matrix G can be permuted from the left by permuta-
tion matrices Pn(n−1)/2 forming the group of cyclic permutation Sn(n−1)/2

and from the right by permutation matrices Pn. These permutations of n
columns form the group Sn of cyclic permutations which changes permu-
tations of the larger left hand group Sn(n−1)/2. This group of graph edges
can not be complete, because it is induced by the lesser cyclic group Sn.
We will use for the graph group induced by permutations of columns of
the incidence matrix Gn simple notation Gn. In mathematical literature
different names are used, as the ”wreath product” or the ”step group”.

In Table 14.2, effects of cyclic permutations on the incidence matrix
of the complete graph Kn are shown.

The indexing of the graph edges is done recursively. To the graph with
n edges a new vertex is added and to the incidence matrix Gn a new block
having the block form of two unit matrices (In|Jn). The subgroup s1

1Sn of
the group Sn−1, which leaves the last column in its place, permutes only the
elements of the matrix G, but its effect transforms the unit cycle s1 with one
element into n elements of the acting permutation matrix and transforms
its cycle structure which adds new cycles to the existing structure of the
graph group.

Of course, the group Sn+1 contains also other subgroups than s1
1Sn.

One of them is the subgroup of the simple cycles sn+1. Each cycle with
uneven length k transforms the (n+1)-th unit cycle into a new cycle of the
same length. In our example (s1

1 + s3
1) transforms into
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(s3
1 + s3

1) = s6
1 and (s1

1 + s1
3) into (s1

3 + s1
3) = s2

3 . (14.3)

Cycles with even length transform the added unit cycle into two cycles,
one having the same length as the original cycle and the other with half
length. For this case, we have in our example the cycles of the length 2:

[s1
1 + (s1

1s
1
2)] = (s1

1 + s1
1s

1
2) = s2

1s
2
2 .

Actually, each element of a cycle of the length n acts on (n−1)/2 induced
elements of the group Gn. If n is odd, (n−1)/2 is a whole number and if n
is even, there remain n/2 edges which are permuted and form a new cycle.
In our example s4 generated the new cycle s2 because the complete graph
K4 has 6 edges. In K6 with 15 edges, s6 produces the cyclic structure s1

3s
2
6.

When there are two cycles of different length, which have not a common
divisor, they induce as many cycles as their common divisor is of the length
which is equal to their lowest multiple. For example: at n = 5 : 2 ×
3 = 6, and there remain 4 elements to be permuted by smaller cycles.
This is possible as s1

1s
1
3. The cycle s1 is induced by the cycle s2 which

permutes two vectors of only one edge and leaves the identity. The cycle s3

permutes columns of three edges only and reproduces itself. Some examples
of induced subgroups of S(a) and the corresponding graph cycles:

S6 s1
6 ; S7 s1

1s
1
6 ; S8 s1

2s
1
6 ;

G6 s3s
2
6 ; G7 s3s

3
6 ; G s1

1s
1
3s

4
6 .

It is possible to generate any graph group either by computing results
of multiplication of the incidence matrices by different permutation ma-
trices, or by deducing effects of different cycle structures. Both ways are
tedious tasks demanding patience and/or computers. If we remind your-
selves that we dealt with sums of only two naive matrices, where all opera-
tions seemed easy, we wonder how complicated must be groups of matrices
having in each row three or more unit symbols, or groups of matrices of
different kinds.

The graph groups Gn can be used for determining the number of all
simple graphs with n vertices, similarly as the cycle indices were used.
An edge can be present in a graph or not. In a simple graph multiple edges
are not allowed and we can imagine that the graphs are placed on vertices
of n(n − 1)/2 dimensional unit cubes which sides are formed by diagonals
as on Fig. 12.1, where two diagonal strings in the 3 dimensional cubes were
shown.

To represent both possibilities, we insert into the cycle indices the poly-
nomial (1 + xk) instead of cycles sk and calculate for all subgroups. The
G4 graph index is
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Figure 14.2: Graphs with 4 vertices and k edgesuu uu u uu u u uu uu uu u
u uu uu uu uu uu u

u uu uu uu u
u uu u u uu u

G4 = 1/24 (s6
1 + 9s2

1s
2
2 + 8s2

3 + 6s1
2s

1
4) . (14.4)

It gives

Z(G4, 1 + x) = 1 + x1 + 2x2 + 3x3 + 2x4 + x5 + x6 , (14.5)

where coefficients at xk determine the number of different graphs with
4 vertices and k edges. They are shown on Fig. 14.2.

14.4 Symmetries of Unoriented Graphs

We explained the graph group by permutations of columns of the incidence
matrix G of the complete graph. Now we use this technique to explain
the symmetry of other unoriented graphs, which are essentially subsets of
k elements of the complete graph.

There are only two possibilities of what a permutation columns of the
incidence matrix can do with the rows. A row can be permuted in itself
or it can be changed into a row corresponding to another edge. The group
of the single edge has two elements: (1)(2) and (12). If the edge is defined on
the set of 4 vertices, then there are 4 permutations which leave it unchanged:
(1)(2)(3)(4), (1)(2)(34), (12) (3)(4), and (12)(34). We can choose 6 different
edges but some will have equal groups, as the edge 3-4 with the edge 1-2.

With k rows we have always three possibilities: Permutations acting
on vertices change only the ordering of rows, that is their indexing. Or
they change them completely (or at least partially) into rows corresponding
to other edges. The result is that one labeled graph is changed into another
labeled graph which must have the same number of edges and must belong
to the same graph type.

The count of the number b of the permutations which only permute
the rows of the incidence matrix G of a graph determines the symmetry
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of the graph. When we divide the number of all permutations n! by the
symmetry number b, we obtain the number of the different labeled graphs
of the given type. b of a single edge on 4 vertices is 4, and there are indeed
24/4 = 6 different edges on the set of 4 vertices. The symmetry number of
this graph K4 is 24 and therefore there is only one distinguishable labeling
of this graph. The relation of the number b to distinguishable labeling is
known as the Burnside lemma.

Now we inspect the calculations according to (14.3). The formula

(1 + x)6 + 9(1 + x)2(1 + x2)2 + 8(1 + x3)2 + 6(1 + x2)(1 + x4) (14.6)

is divided according to its increments in the final result as:

Powers of x 0 1 2 3 4 5 6
s6
1 1 6 15 20 15 6 1

9s2
1s

2
2 9 18 27 36 27 18 9

8s2
3 8 16 8

6s1
2s

1
4 6 6 6 6
Σ 24 24 48 72 48 24 24

Number of graphs 1 1 2 3 2 1 1

All permutation matrices of the group S4 transform the empty or com-
plete graph into itself. Therefore their b = 24. When we divide the column
sums by 24, we obtain the number of different graphs with k vertices. The
number of the distinguishable labeled graphs is given in the first row, where
the identity permutations are counted. For a single edge, it gives six dif-
ferent graphs. The number b is produced by three permutations of rows of
the type s2

1s
2
2 and by one permutation s6

1.
At graphs with two edges, 15, 27, and 6 permutations belong to two

different graphs, either L3 and one isolated vertex or two L2. When we
try to divide the permutations into the graph orbits, we can use the fact
that both b and the number of different labeling of a graph must be divi-
sors of n!. 15 can then be split only as 12 + 3. Then 27 can be divided
as 12 + 12 + 3. We can use also another criterion, to decide which from
both possibilities is right. We exploit possible partitions of vertex degrees.
Graphs with two edges have the sum of vertex degrees 4 and for 4 vertices
two partitions: 2110 and 1111. There are 12 distinguishable permutations
of the first partition and only 1 permutation of the second one. This par-
tition is stable at all permutations, including the cycle of the length 4,
therefore the group structure is s1

4. Both criterions leave as the only pos-
sible splitting 12 + 12 + 3. There are 12 linear chains L4 with b = 2 and
the group structure (s4

1 + s2
2), and 3 graphs 2K2 with b = 8. Their group
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structure is s4
1 + 2s2s1

2 + 3s2
2 + 2s1

4. The graphs with five and six edges are
complementary the graphs with none and one edge.

14.5 Oriented graphs

In an simple oriented graph, two arcs between each pair of vertices can exist.
The symmetry of the oriented graphs is complicated by this fact. This can
be documented on the relation between the number of selfcomplementary
unoriented graphs with 4k vertices and the number of selfcomplementary
tournaments with 2k vertices. A tournament is a connected oriented graph
which can have only one from both orientations of arcs.

The complete tournament with 2k vertices has (4k2 − 2k) arcs, the
complete oriented graph with 4k vertices has (8k2−2k) arcs. It is necessary
to complete a graph corresponding to a selfcomplementary tournament with
2k vertices, and to generate from each arc two arcs. It can be done as
follows: We generate 2k new vertices indexed by dashed indices of the
tournament and we connect all odd dashed and undashed vertices having
equal index by k arcs. If in the tournament the arc i-j exists, we induce arcs
i-j and i-j’ in the complementary graph, if there is the arc j-i, we introduce
arcs i’-j and i’-j’. The arcs missing in the induced graph are present in the
selfcomplementary graph, they correspond to the arcs in the complementary
tournament or connect even dashed and undashed vertices. The difference
is formed by 4k2 arcs and 2k vertices.

The difference between the oriented and unoriented graphs can be ex-
plained also in a other way. We can use two separate rows for both orienta-
tions of the arcs i-j and j-i, respectively. In an simple oriented graph, n(n-1)
arcs can be, that is twice the number of the edges. The incidence matrix
S has twice the number of rows of the incidence matrix G and permuta-
tions of its columns induce another kind of column permutations changing
the signs. The permutation (12)(3)(4) induces the graph permutations
(12)(23)(45)(6) (89)(10,11)(12) which leaves only two rows unchanged.

We already mentioned that the number of labeled unoriented graphs is
2n(n−1)/2. This can be written as the polynomial

G(t) = (1 + t)(
n
2) with t = 1 . (14.7)

This fact is deduced, from the possibilities of how to fill the adjacency
matrix A with unit symbols. There are

(
n
2

)
possibilities which are indepen-

dent. The adjacency matrix is symmetrical. The filling goes simultaneously
in the lower and upper off-diagonal positions. The polynomial G(2) gives
the number of labeled oriented graphs with only one arc between a pair of
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vertices. This corresponds to an adjacency matrix which has only one ele-
ment in each pair of positions i-j and j-i showing the orientation of the arc.
The polynomial G(3) gives the number of oriented graphs with both orien-
tations of arcs, or the number of asymmetrical adjacency matrices which
can have a pair of unit symbols in each pair of the corresponding places.

14.6 Connected Unoriented Graphs

A graph is connected if it has only one component. The number of unori-
ented connected graphs can be determined if we count all graphs rooted in
one component Ck with k vertices. Their number is equal to the number
of all rooted labeled graphs

n2n(n−1)/2 =
n∑

k=1

(
n

k

)
CkGn−k , (14.8)

where Gn−k is the number of all rooted graphs with (n − k) vertices,
that means n2(n−k)(n−k−1)/2 with G0 = 1. The meaning of the left hand
side of the identity is clear: Each graph has n possible roots. The right
hand side counts each graph according to the number of its components.
If it has two components, then it is counted twice, once with k roots, then
with (n−k) roots. The empty graph is counted n times due to the binomial
coefficient on the right hand side.

When we separate the number of connected graphs Cn, we can deter-
mine the number of all rooted labeled graphs recursively. Here a general
relation between two generating functions is applied, the normal and the
exponential ones. The numbers of the connected labeled graphs Gn are the
coefficients of the exponential generating function of the labeled graphs

G(x) =
∞∑

n=1

Cn(x)/n! = exp(
∞∑

n=1

anxn) . (14.9)

Because there exists also the normal generating function of the labeled
graphs

G(x) =
∞∑

n=1

Anxn) , (14.10)

both functions can be compared. Inserting a0 = 1, we can logarithm
both sides with the result
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an = An − 1/n
∞∑

n=1

kakAn−k) . (14.11)

(14.8) appears to be just a special case of this identity.
The number of connected graphs Cn is a fast growing function

n 1 2 3 4 5 6
Cn 1 1 4 38 728 26704

.



Chapter 15

Eigenvalues and
Eigenvectors

15.1 Interpretation of Eigenvalues

The quadratic forms of the naive matrices NTN are diagonal matrices.
Also squares of Hadamard matrices are diagonal matrices. But the sec-
ond quadratic forms of naive matrices NNT and the quadratic forms of
the incidence matrices of graphs G and S have off-diagonal elements. We
interpreted the diagonal and the off-diagonal elements as two orthogonal
matrix vectors, giving the unit projections of any matrix vector M into the
space of rows and columns (see Fig.1.6). In this chapter we will show con-
ditions when a matrix vector can be represented by an equivalent diagonal
matrix of eigenvalues introduced in Sect. 3.5 and the properties which such
a substitute has.

When compared with the naive matrices, one property is clear: The
diagonal matrix must have the same length as the matrix vector M itself.
From this property follows that at the diagonalization, the matrix vector M
is rotated to decrease the importance of the off-diagonal elements. Alter-
natively, the vector position is stable and we move the coordinate system,
exactly as if we were going around the matrix till a place is found, from
where it is possible to see through. Such a point of view has its own set of
coordinates.

The going around the matrix is similar with the function of the polar-
izing filters rotating the light (the set of the eigenvalues is known as the
spectrum of the matrix) has a pair of matrices known as matrices of eigen-
vectors. The matrix M is put between a pair of eigenvector matrices ZT

203
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and Z and the resulting product is the equivalent diagonal matrix ∆(M):

ZTMZ = ∆(M) . (15.1)

In Sect. 3.5, symbols L and R were used for both diagonalizing ma-
trices. The difference between these matrices and the eigenvectors is due
to the additional demand on the eigenvectors. The eigenvectors are the
diagonalizing vectors which are normalized as in the following examples

1/
√

2 1/
√

2
1/
√

2 −1/
√

2
0 1 1/

√
2 −1/

√
2

1 0 1/
√

2 1/
√

2
1/
√

2 1/
√

2 1 0
1/
√

2 −1/
√

2 0 −1

1/
√

2 1/
√

2
1/
√

2 −1/
√

2
2 1 3/

√
2 1/

√
2

1 2 3/
√

2 −1/
√

2
1/
√

2 1/
√

2 3 0
1/
√

2 −1/
√

2 0 1

The situation is complicated when more eigenvalues are equal and the cor-
responding values are multiple.

Notice two important properties of eigenvector matrices:

• 1. Their column vectors should be orthogonal and normalized

ZTZ = I . (15.2)

For example:

2−1/2 2−1/2

2−1/2 −2−1/2

2−1/2 2−1/2 1 0
2−1/2 2−1/2 0 1

Sometimes it is difficult to find the orthogonal eigenvectors, if more
eigenvalues are equal (or one eigenvalue is multiple).
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• 2. When eigenvectors multiply the matrix M, all its elements are
multiplied by the factor corresponding to the eigenvalue λj . In other
words, the matrix M behaves to its eigenvector matrices ZT and Z
as a diagonal matrix of the eigenvalues

MZ = λjZ . (15.3)

15.2 Eigenvalues and Singular Values

All the above equations were written for the quadratic matrices M, repre-
senting quadratic forms. For rectangular matrices we can fill their missing
row or column elements by zeroes and for any vector taken as the eigenvec-
tor, we obtain a zero eigenvalue. We will not be interested in the eigenvalues
of the rectangular matrices, but in the eigenvalues of their quadratic forms,
which are known as the singular values of the rectangular matrices and
of the asymmetric square matrices.

The incidence matrix S of a tree is (n − 1) × n-dimensional. STS is
n-dimensional matrix, SST is (n − 1)-dimensional matrix. Both products
have the same sets of singular values. In this case STS must have one zero
λj . This is true for all connected graphs. The square unit matrix JJT has
only one nonzero eigenvalue which is identical with the eigenvalue of JTJ.
This is the sum of n units.

We repeat once again the important fact that on the diagonals of both
quadratic forms as well ason the diagonals of squared symmetric matrices
appear the squared elements mij . If a matrix is symmetric, both quadratic
form coincide with the square of the matrix MTM = M2, therefore the
singular values of the symmetric matrices coincide with their squared eigen-
values.

15.3 Characteristic Polynomials

Now we approach to the problem of the eigenvalues in another aspect. A
matrix and the matrix of its eigenvectors form a system of linear equations
which solutions are found when consecutively the diagonal matrix of eigen-
values ∆(λ) is subtracted from the matrix M and the resulting matrix is
multiplied by the eigenvector z:

(M− λI)z = 0 . (15.4)

For example: the matrix
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(
2 1
1 2

)
corresponds to the equations

(2− λ)x + y = 0

and

x + (2− λ)y = 0 .

If we insert the eigenvector x = 1, y = 1, we get as the solution λ = 3, for
x = 1, y = −1, the eigenvalue is λ = 1. We already know the eigenvectors,
otherwise the solution must be found using different methods. The product
of the differences of the eigenvalues with an unknown x is the characteristic
polynomial P (x) of the matrix M. In the given case it is P (x) = x2−4x+3.
In the general case the characteristic polynomial is

P (x) =
n∏

j=1

(x− λj) = xn − a1x
n−1 + a2x

n−2 . . .± an−1x± anx0 . (15.5)

The term a1 is just the sum of all the eigenvalues and it is identical
with the trace of the matrix, the last term is the product of all eigenvalues
and determines if a system of eigenvalues has a solution. Therefore it is
called the determinant. If a matrix has at least one zero eigenvalue, then
the solution of the matrix equations is undetermined and the matrix is
singular.

15.4 Permanents and Determinants

Until now the permanents were not defined and without them we had dif-
ficulties describing how the polynomials are obtained from the matrix ele-
ments. Let suppose that we have square matrices which elements are either
symbols or numbers, For example:

A a b c
d e f
g h i


B 1 1 2

0 1 3
1 1 0

 .
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The permanent p(M) is the sum of all products of all combinations of
all elements mij in the row i or the column j, respectively, with the elements
with other indices in all other columns and rows

p(A) = aei + afh + bdi + bfg + cdh + ceg

p(B) = 110 + 131 + 100 + 131 + 201 + 211 = 8 .

We use the whole set of the permutation matrices P as the templates
and write the elements incised by them from the matrix as the products.

It is clear that the number of elements in a n-dimensional permanent
is n!. The n elements in each row are multiplied with (n − 1)! strings of
preceding permanents. Actually, the number of rows and columns in a
matrix need not to be equal, but the corresponding products then contain
zeroes. This is important for the definition of determinants.

Before we start with them, we show at least one result from the rich
theory of permanents, namely the permanents of matrices (JJT

n + kIn):

• If k = 0, we have a square unit matrix. All n! strings of the permanent
are equal 1 and their sum gives factorial n!.

• If k = −1, then zeroes are on the main diagonal and all strings con-
taining at least one diagonal element are zero. We count the elements
of the permanent as the permutation matrices P without elements on
the main diagonal. You might remember (if not, see Chapt. 7) that
they are counted by subfactorials zi0, Table 7.3. It gives for the matrix
(JJT − I) the result (JJT

n − In) = (rn − 1)n.

• If k=1, we have on the main diagonal 2 and elements of the permanent
containing the diagonal elements are powers of 2. Inserting this value
into the generalized polynomial, we get (JJn + In) = (rn − 1)n. This
is the Apple polynomial.

• Similarly the permanents for any k are found.

The determinant Det(M) is in some sense an inverse function of the
permanent, because it is based on the principle of inclusion and exclusion.
It has identical elements as the permanent, only their signs can be either
positive or negative, depending on the sign of the generating permutation,
that is on the number of inverses. For our examples it is

Det(A) = aei− afh− bdi + bfg + cdh− ceg
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Det(B) = 0− 3− 0 + 3 + 0− 2 = −2 .

For n = 2, the determinant is Det(M) = ad − bc. For n = 3, the
determinant is found easily if we repeat the first 2 rows of the matrix as its
4-th and 5-th rows and write the diagonal products on the left and on the
right

a b c
(−) d e f (+)
ceg g h i aei
fah a b c dhc
ibd d e f gbf

Finding determinants of higher order matrices used to be a tedious task.
It was formalized by the definition of minors Aij of matrix elements mij .
The minor Aij is the determinant of the matrix δijM obtained from the
matrix M by deleting the j-th column and i-th row. The determinant is
then defined as the sum of products of all elements of a row or a column
with their minors

Det(M) =
m∑

i=1

mijAij =
n∑

j=1

mijAij . (15.6)

Only for some types of matrices it is easy to find their determinants.
It is obvious that the determinant of a diagonal matrix is the prod-

uct of its elements, whereas the trace is their sum. Because the elements
of a diagonal matrix are simultaneously its eigenvalues, the determinant is
the product of the eigenvalues of a matrix

Det(M) =
n∏

j=1

λj . (15.7)

This is true for any matrix and this fact gives another definition of
the determinant as the volume of a rectangle formed by its eigenvalues. If
an eigenvalue is zero, the rectangle does not form a body in n-dimensional
space and its volume is zero.

The polynomial is the product of the differences of the diagonal matrix
of the unknown x minus the matrix M itself. It is calculated similarly as
the determinant, only the differences remain unopened. The determinant
is the last term an of the polynomial, when x0.

Otherwise: when a matrix contain unknown x’s on its diagonal, we
cannot calculate its determinant in the closed form as a number. The
result is a polynomial. For example: the matrix M:
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 x a b
a x c
b c x


Has the determinant

DetM = x3 + 0x2 − (a + b + c)x1 + 2abcx0 .

The determinants of the symmetrical matrices with zeroes on the diago-
nal are partitioned according to the powers of x by the rencontres numbers,
and the numbers obtained are identical with the elements of the character-
istic polynomial.

Also for the triangular matrices in the lower or the higher triangular
form, the determinant is the product of their diagonal elements. We de-
compose the determinant according to the elements of the first row. There
will be only one nonzero element m11A11. Then we decompose the minor
A11 similarly. Two rules are important for calculating of the determinants:

• 1. Changing the order of rows or columns does not change the value
of the determinant, but it can change its sign. The permanent does
not depend on the ordering of columns and rows and the sign can
be changed if the new permutation of rows or columns changed the
signature of terms of the determinant.

• 2. The determinant is not changed, when we add or subtract to some
row (or column) of the matrix a multiple of a row (or a column) of
the matrix. If we add to the second row in the above example its first
row and control all terms, we see that what appears on one side of
the determinant, that appears also on the other side in products with
negative signs and all changes eliminate themselves, and the value of
the determinant remains unchanged.

Both rules are exploited for calculation of the determinants. For exam-
ple, we show how the determinant of matrices (JJT

3 − I3) is found:

0 0 1 1
1 0 1
1 1 0


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Figure 15.1: Interpretation of the determinant.

0.30

A(5,2)

B(2,5)

O(0,0)

1 2 2 2
1 0 1
1 1 0


2 2 2 0

1 0 0
1 1 −1


3 2 0 0

1 −1 0
1 0 −1


• 1. The sum of the second and the third row 2,1, 1 was added to the

first row.

• 2. The first column was subtracted from the last one.

• 3. The first column was subtracted from the second one.

The n dimensional matrix (JJT
3 − I) transformed by these three steps

into the lower triangular form has on the diagonal one value (n − 1) and
(n− 1) values -1. The larger matrices need more steps.

Nowadays, the determinants are found usually by computers. But to
gain insight, it is good to know the principles which form the base of the
algorithms used.

The determinant can be interpreted as 1/n! part of volume of the n-
dimensional body described by matrix together with the origin of the co-
ordinates. For example, two points A(5, 2) and B(2, 5) form with O(0, 0) a
triangle, see the Fig. 15.1

The surface of the triangle is 25− 10− 4.5 = 10, 5. The determinant of
the matrix (

5 2
2 5

)
is 25− 4 = 21. One half of it is 10.5.
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15.5 Graph Polynomials

The adjacency matrices A of simple graphs without loops have all off-
diagonal elements either 1 or 0, and all diagonal elements are zero and they
are symmetrical aij = aji. If we try to find their polynomial by the above
described method, we find for 3 vertices

One off-diagonal element P (A) = x3x1 =
3∏

j=1

(x− λj) (15.8)

Two off diagonal elements P (A) = x3 − 2x1 . (15.9)

The coefficient a1 at x2 in the polynomial corresponding to the sum
of eigenvalues is 0, since the trace of A is zero the coefficient a2 at x1

corresponding to the sum of terms λiλjx, is proportional to the number
of edges in the graph. This is true also for graphs with more vertices,
because these terms appear in the polynomial, when the diagonal terms x
are multiplied by the off-diagonal elements. Due to the symmetry of the
adjacency matrices all terms at xn−kodd are zero and terms at xn−keven are
formed by the number of k-multiples of isolated edges. These k-tuples are
known as the edge figures.

For example: for the chain L6

u u u u u u
has the terms of the polynomial 5, 6 and 1. The polynomial of the

adjacency matrices A of the trees is known as the acyclic polynomial, be-
cause it does not accommodate for cycles. It is simultaneously the matching
polynomial of the acyclic graphs.

The polynomial coefficients of the linear chains can be tabulated rather
easily (Table 15.1).

For L6, we have 5 edges. Six two-tuples and one three-tuple are shown
on Fig. 15.2.

The elements of the Table 15.1 (compare with Table 10.7) are the bino-
mial coefficients diluted by zeroes. The row sums of the absolute values of
coefficients are the Fibbonacci numbers. The coefficients of the polynomials
of the linear chains are the greatest ones which are obtainable for the trees.
It is clear that not too many combinations of these coefficients are possible.
Since the number of trees is a fast growing function, and the coefficients are
limited, their combinations, compared to the number of trees, are scarcer
and as the result, trees must be isospectral. This means that different types
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Table 15.1: Polynomial coefficients of the linear chains Ln

k 1 2 3 4 5 6 7
m=0 1

1 0 1
2 -1 0 1
3 0 -2 0 1
4 1 0 -3 0 1
5 0 3 0 -4 0 1
6 -1 0 6 0 -5 0 1

Figure 15.2: Six two-tuples (A) and one three-tuple (B) of the chain L6.

u u u u u u
uu
uu
u

uu
uu
u

uu
uu
u

uu
uu
u

uu
uu
u

uu
uu
uu u u u u u

A

B



15.5. GRAPH POLYNOMIALS 213

Figure 15.3: A pair of the smallest isospectral trees.

u u uu uu u u u uuu u u uu
Figure 15.4: The complete graph K3 and simultaneously the cycle C3.

u u
u

of trees must have identical spectra. On Fig. 15.3 is a pair of the smallest
isospectral trees which polynomial is x8 − 7x6 + 9x4.

The acyclic polynomial combines with the cycle polynomial if cycles
appear in a graph. The effect of cycles can be shown on the example
of the adjacency matrix of K3 (Fig. 15.4): x −1 −1

−1 x −1
−1 −1 x

 = P (A) = x3 − 3x1 + 2

There appears the coefficient 2 at the term x0. This is produced by the cy-
cle C3. This cycle is counted twice. This multiplicity appears at all cycles
which must be counted separately from the acyclic terms. The cycles of
even length k are subtracted from the number of k/2-tuples of isolated
edges. It is rather easy to construct the polynomials of the isolated cycles.
If we remove from a cycle an edge, it turns into a linear chain which acyclic
polynomial we already know, and the bridging edge combines to k-tuples
with (n−3) edges of the cycle, as if they form differences of the linear chain
with (n− 2) vertices. These k-tuples are subtracted from the terms of Ln.
For example

P (C6) = P (L6)+P (L4) = (x6−5x4+6x2−1)−(x4−3x2+1) = x6−6x4+9x2 .

To obtain the cycle polynomial, we must subtract the coefficient 2 for
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the cycle of the length n = 6. The result is

x6 − 6x4 + 9x2 − 2 .

If the adjacency matrix is weighted or the graph contains multiple
bonds, the polynomial can be modified accordingly. We have shown that
the coefficient a2 of the polynomial at xn−2 is formed from the squares of
the matrix elements. Further terms in larger matrices are more compli-
cated. Finding of all k-tuples of isolated edges and cycles in graphs with
many vertices and edges is tedious and calculating of polynomials by this
technique is no more practical.

15.6 Cluj Weighted Adjacency Matrices of the
linear chains

Diadudea introduced asymmetrically weighted distance matrices, Cluj ma-
trices (named according to his home town in Rumania), by the Wiener
weights Ni,(i,j) and Nj,(i,j) (the number of vertices on the end j of the path
pij from the diagonal vertex (i = j) to the off-diagonal vertex j (i 6= j).

At first, it is necessary to explain relations of the Cluj matrices to
other matrices characterizing graphs, as the incidence matrices S (oriented
graphs) and G (unoriented graphs), walk and path matrices defined W on
arcs (edges, respectively), and walk and path matrices defined P on vertices
see next chapter.

The elements of the incidence matrix of an oriented graph S are defined
as sij = −1 if the arc i goes from the vertex j, sij = 1 if the arc i goes
to the vertex j, sij = 0, otherwise. The quadratic form of the incidence
matrix with its transpose ST is known as the Laplace–Kirchhoff matrix.
It is decomposed into the diagonal matrix of the vertex degrees V and
the matrix of the off–diagonal elements known as the adjacency matrix A
(aij = 1, if the vertex i is adjacent to the vertex j, aij = 0, otherwise)

ST S . (15.10)

The other quadratic form of the incidence matrix with its transpose
S ST has off–diagonal elements corresponding to the adjacency matrix A
of the line graph. For trees, this matrix has dimension (n− 1) and has the
true inverse which is the quadratic form of the walk and path matrices W
defined on arcs (edges, respectively).

The walk (path) matrices P are defined on vertices for trees, too. The
elements of Pp (path) are for oriented trees pij = 1, if the vertex j is
incident with the path i, pij = 0, otherwise. The elements of Pw (walk)
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are for unoriented trees pij = 1, if the vertex j is on the end of the path i,
pij = −1, if the vertex j is an inner vertex in the path i, pij = 0, otherwise.

The sum

Pw + Pp (15.11)
is twice the incidence matrix GK of the complete unoriented graph Kn,

since in the sum only the direct walks between all pairs of vertices remain.
The Cluj matrices of trees are the scalar products of the transposed

walk matrix Pp
T with the incidence matrix GK (this convention can be

transposed)

Cp = PT
p GK . (15.12)

For example: for the linear chain L4: 
1 1 0 0
0 1 1 0
1 0 1 0
0 0 1 1
0 1 0 1
1 0 0 1




1 0 1 0 0 1
1 1 1 0 1 1
0 1 1 1 1 1
0 0 0 1 1 1




3 1 1 1
3 3 2 2
2 2 3 3
1 1 1 3

 .

The diagonal elements of the scalar product count (n− 1) walks going
from the vertex j = i to the other vertices. The off–diagonal elements of
the scalar product count walks incident with both vertices i and j. The
off–diagonal matrix is the Cluj matrix Ce

Since Diadudea was interested mainly in chemical aspects of the new ma-
trices Cp, there remained unnoticed some properties of the direct (Hadamard)
product of a Cluj matrix with the corresponding adjacency matrix A:

Ce = Cp •A , (15.13)
which leaves only adjacent elements of the Cluj matrix Ce (or equiva-

lently Cluj weighted adjacency matrix AC , for example for the linear chain
L4 (n-butane) above 

0 1 0 0
3 0 2 0
0 2 0 3
0 0 1 0

 .
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The basic properties of these adjacency matrices weighted by the num-
ber of vertices on the ends of arcs (edges) AC are:

1) The sum of their elements is n(n - 1). Each from the (n - 1) edges
has n vertices on its ends.

2) The trace is zero.
3) The sum of squared eigenvalues is 2W:

TrA2
C = 2W (15.14)

since on the trace of A2
C appear twice the products of the number of

vertices Ni,(i,j) Nj,(i,j) on both sides of all edges.
The spectrum is symmetrical, the eigenvalues appear in pairs ±λj . The

odd eigenvalue of the trees with the odd number of vertices is zero. The
largest eigenvalue is (n − 1), it coincides with the largest matrix elements
Nij of the pending vertices.

The term of the characteristic polynomial xn−1 is zero, the term xn−2

is the Wiener number.
The pair of the largest eigenvalues ±(n − 1) of the stars are their only

nonzero eigenvalues. This is consistent with their Wiener number Sn: WS =
(n− 1)2.

The eigenvalues of the linear chains Ln with odd n (from the inspection
of the first chains) have values (0,±[2, 4, . . . , (n − 1)]), the eigenvalues of
the linear chains Ln with even n have values (±[1, 3, . . . , (n− 1)]).

These values are compatible with the combinatorial identities for the
sequences of the binomial coefficients. For odd n:(

n + 1
3

)
=

(n−1)/2∑
k=0

(2k)2 =
n−1∑
k=1

k(n− k) , (15.15)

for even n: (
n + 1

3

)
=

n/2∑
k=1

(2k − 1)2 =
n−1∑
k=1

k(n− k) . (15.16)

The characteristic polynomial can be calculated analogously to the known
method of determining the characteristic polynomial of the unweighted
adjacency matrices of trees by counting of all k-tuples of isolated edges.
Here each k-tuple gets its weight determined by all arc (edge) products
Ni,(i,j)Nj,(i,j).

For example: for L5:
Weights of bonds 1 – 4 = 4; 2 – 3 = 6; 3 – 2 = 6; 4 – 1 = 4;: x3

term (1-tuples, the Wiener term): 4 + 6 + 6 + 4 = 20; x1 term (2-tuples):
(4× 6) + (4× 6) + (4× 4) = 64.



15.7. PRUNING TECHNIQUES 217

Figure 15.5: Pruning of graphs. Graphs 1A and 2A are increased by adding
one edge and one vertex (1B and 2B). The graphs B are pruned by deleting
the new edge together with the adjacent vertices (empty circles) and the
adjacent edges (1C and 2C).

u u u u u u u u u e e
u u u u u u uu uee

A B C

1

2

The characteristic polynomial: P = x5 − 20x3 + 64x.
The term xn−1 of the characteristic polynomial is zero. It corresponds to

the sum of the eigenvalues. The term xn−2 of the characteristic polynomial
is determined by the sum of 1-tuples. Therefore it is the Wiener term. It
corresponds to the sum of the products of two eigenvalues. Both recurrences
are compatible with the combinatorial identities and above.

15.7 Pruning Techniques

The characteristic polynomial of an acyclic graph is the determinant of the dif-
ference of its matrix and the diagonal matrix xI. When a graph is en-
larged by adding a new vertex and an edge, the characteristic polynomial
is changed according to the place, where the new vertex is attached. Other-
wise, if the graph size is decreased, by subtracting one vertex with its edges,
the polynomial of the induced graph is differentiated according to the graph
which remains, when the connecting vertex, to which a new vertex is at-
tached, is removed with all its edges. The final characteristic polynomial
can be then written as the determinant of a 2×2 matrix For example (Fig.
15.5): (

(x3 − 2x) x2

1 x

)
= x4 − 3x2

(
(x3 − 2x) (x2 − 1)

1 x

)
= x4 − 3x2 + 1

In the first case two loose vertices K1 correspond to the term x2,
in the second case the graph K2 corresponds to the term (x2 − 1).

A graph can be pruned off more branches simultaneously and the branches
need not to be the isolated vertices only but they can be also graphs.
On the diagonal there appear always the polynomials of the pruned and
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the pruning graphs and off-diagonal elements are their corresponding dif-
ferences. The only necessary condition is that all the subgraphs must be
connected by the bridges, edges or arcs, connecting two vertices without
cycles. Then in the matrix polynomials of corresponding subgraphs and
their differences, the polynomials of corresponding subgraphs without the
connected vertex appear(

polynomial A difference AB
difference BA polynomial B

)
.

For example, the star S3 pruned as 2K1 and K2(
x2 − 2 2

1 x− 1

)
The pruning decreases the dimensionality of the polynomial.

15.8 Polynomials of Graphs with Loops

A diagonal matrix of vertex degrees V can be considered an adjacency
matrix of a graph which consists only of loops. Its polynomial is obtained
simply as the product

n∏
j=1

(x− vj) =
n∏

j=1

(x− λj) . (15.17)

The coefficients of the polynomial can be calculated also as the sums
of all k-tuples of the isolated loops on different vertices for example for
vj = 2, 1, 1:

Loop 1-tuples 2-tuples 3-tuples
* * * 0 0* *0 *0 0* 0 * *0 0*

* * * * * *
* * * * * *

Σ 4 5 2

The loop polynomial is P (V ) = x3−4x2 +5x1−2. This makes possible
to find the polynomials of the quadratic forms GTG or STS (V ±A).

The loop figures are combined with the edge or the arc figures. All
pairs of loops are counted together with of one edge figures. The loops
figures formed from a loop and an edge are counted together with the 3-
tuples of the loops. Therefore the polynomials of the quadratic forms of
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the incidence matrices of the oriented and unoriented graphs contain all
terms of the polynomial, and not only the every second term as the acyclic
polynomial does. The final loop polynomial of L4 has 3 components:

Loop polynomial x3 −4x2 +5x1 −2
Edge polynomial −2x1

Cycle polynomial 0
Edge-loop polynomial + 2
Resulting polynomial x3 −4x2 +3x1

The effect of the diagonal elements is simple, when all the diagonal
elements are equal r, as at the regular graphs. The unknown x can be
replaced by substitution y = (x+r) and the matrix treated as being without
diagonal elements. This can be exploited in some cases for the calculation
of the determinants, as we will see later.

15.9 Vertex and Edge Erased Graphs

The set of n subgraphs of a graph G, obtained from the parent graph by
deleting each vertex with all its incident arcs or edges, is known as the Ulam
subgraphs. Ulam conjectured that the parent graph can be reconstructed
from this set. This appears trivial but it is difficult to prove it for the
unlabelled graphs, where there is no simple way, how to mach the unlabelled
vertices of two graphs. There exist another relation, the polynomials of the
Ulam subgraphs are the differences of the polynomial of the parent graph.
It means that the vertex erased subgraph δjG is the partial difference of
the parent graph according to the erased vertex δjP (G) or the difference of
the corresponding matrix, obtained by eliminating the corresponding row
and column. The rules of differentiation and integration are the same as in
the differential and the integral calculus

δxn = nxn−1 (15.18)∫
nxn−1 = xa . (15.19)

The reconstruction of the parent polynomial of a matrix from the sum
of differences

P (M) =
∫ n∑

j=1

δjP (M) (15.20)

is exact till the integration constant which vanishes in the differences.
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Figure 15.6: The graph A and its vertex erased subgraphs A1 – A5.
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For example: the graph on the Fig. 15.6 the matching polynomials of
its Ulam subgraphs are

A1 x4 −4x2 −2x +1
A2 x4 −2x2

A3 x4 −5x2 −4x
A4 x4 −3x2

A5 x4 −4x2 −2x +1∑
5x4 −18x2 −8x +2

A x5 −6x3 −4x2 2x

In edge (or arc) erased graphs, only the edge (arc) itself is eliminated
without eradicating incident vertices, which corresponds to the elimination
of the corresponding row and column in the quadratic form GGT or SST,
respectively. The set of the edge erased subgraphs has m subgraphs, m
being the number of edges of the graph. In trees, each subgraph has always
two components. Here also the sum of the polynomials of the edge erased
subgraphs of trees is a difference of the polynomial of the parent tree, but
the rules of differentiation are different. The coefficients at (n−2k) powers
of x are not multiplied by the power of x and the power of x is not decreased,
but they are divided by (m− k) and the power of x is left unchanged.

An edge erased tree is a forest with n vertices and the first term of
its polynomial is xn. There are m subgraphs and therefore the sum of all
subgraph polynomials is divisible by m. All subgraphs contain (m−1) edges
and therefore the coefficient of the second term of the sum, when divided
by this number gives m. The following coefficients can be deduced using
the full induction. If the relation of polynomials is true for the parent tree,
it must be true also for its subgraphs (forests), containing one edge less,
and their polynomials. Corresponding coefficients of all subgraphs must be
0 mod (m− k). This is true also for the term an−k if n = (2k + 1). Among
the subgraphs of the linear chain there exist k subgraphs containing the
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Figure 15.7: The tree B and its edge erased subgraphs B1 – B5.
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term corresponding to (k + 1) tuple. For example the graph on the Fig.
15.7 the matching polynomials of its edge erased subgraphs are

B1 x6 −4x4 +2x2

B2 x6 −4x4 +2x2

B3 x6 −4x4 +2x2

B4 x6 −4x4 +3x2

B5 x6 −4x4∑
5x6 −20x2 +9x2

B x6 −5x4 −3x2

For the matching polynomials an eliminated edge reduces the number
of figures with k isolated edges. There are always (m− k) such subgraphs
with the same polynomial. Dividing by this parameter the coefficients at
the terms at xn−2k, we get the acyclic polynomials for the cyclic graphs,
too. For example:

K4 : x4− 6x2 + 3Σiδ(P ) = 6(x4− 5x2 + 2) = (6/6)x4− (30/5)x2 + (12/4) .

The differences of the matrices will be useful for finding their inverses.

15.10 Seidel Matrices of Regular Graphs

Seidel defined a modified adjacency matrix AS for so called the schlicht1

graphs (with simple arcs) in the following way: aij = −1 if i and j vertices

1From German.
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are adjacent, aij = 1 if i and j vertices are non-adjacent and aii = 0. It
means that

AS = A−A . (15.21)

This matrix can be interpreted as the difference of the adjacency matri-
ces of the graph G and its complementary graph G. The Seidel matrix of
regular graphs can be formulated as the difference of the Laplace-Kirchhoff
matrices K = STS of both graphs corrected by the regular diagonal terms
(n− 1− 2r) where r are vertex degrees of the regular graph.

AS = K−K + (n− 1− 2r)I . (15.22)

Therefore the Seidel matrix of a regular graphs has a spectrum which
is obtained from the difference of the spectra of its Laplace-Kirchhoff ma-
trix K and the Laplace-Kirchhoff matrix of its complementary graph K,
corrected by the diagonal term. For example: for a cycle C4:

Spectrum C4 4, 2, 2, 0
Spectrum C4 0, -2, -2, 0
∆(n− 1− 2r) -1, -1, -1, -1
Spectrum A 3, -1, -1, −1 .

The result is identical with the spectrum of the adjacency matrix of
the complete graph K4, despite that the Seidel matrix contains unit el-
ements of both signs. But both matrices, A(K4) and AS(K4) are the
adjacency matrices of line (bond) graphs of two stars S5 with different
orientations. Because both orientations

↓ ↑
→ ← ← →

↓ ↑

have the identical Laplace-Kirchhoff matrices K and therefore also the iden-
tical spectrum. The result is correct.

Using the same argumentation, the quadratic form SST of the bipar-
tite cycles (n even), which spectra are equivalent to the Laplace-Kirchhoff
matrices STS, have all off-diagonal elements either negative or one off-
diagonal element in each row can be negative and the other positive. If
we combine K(C2k) with K(C2k) the result is identical with the difference
K(kK2)−K(kK2). Therefore the Seidel adjacency matrices of k complete
graphs K2 and the cycles C2k are isospectral. For example:
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Spectrum K(3K2) 2 2, 2 0, 0, 0
Spectrum K(3K2) -4, -4, -4, -6, -6, 0
∆(n− 1− 2r) 3, 3, 3, 3, 3, 3
Spectrum A (3K ) 1, 1, 1, -3, -3, 3

Spectrum K(C6) 4, 3, 3, 1, 1, 0
Spectrum K(C6) -2, -3, -3, -5, -5, 0
∆(n− 1− 2r) 1, 1, 1, 1, 1, 1
Spectrum A(C6) 3, 1, 1, -3, -3, 1.

15.11 Spectra of Unoriented Subdivision Graphs

A subdivision graph S(G) is obtained from a graph G by inserting a new
vertex into each of its m edges. The adjacency matrix of an unoriented
subdivision graph A[S(G)] is obtained straightforwardly from the incidence
matrix G of the parent graph writing it in the block form

A[S(G)] =
(

0 G
GT 0

)
,

where 0 is the zero matrix.
The spectra of the adjacency matrices of subdivision graphs with n

vertices and m edges are related with the spectra of the quadratic form
GTG of parent as graphs

PS(G)(λj) = (λj = 0)‖m−n‖ ± PGTG(λj)1/2 , (15.23)

where GTGλj are eigenvalues of the quadratic form of the incidence
matrix G of the parent graph. The same relation is true even for the
subdivision oriented graphs S(G) with the incidence matrices S.

The adjacency matrix A2[S(G)] has two blocks GTG and GGT. Both
blocks have the identical spectra. Their square roots with both signs form
the spectrum of the the adjacency matrix of the subdivision graph. The dif-
ference between the number of vertices and edges are zero eigenvalues.

This can be exploited for calculations. For example, the cycle C3 has
the adjacency matrix A equivalent with its incidence matrix G. The sub-
division graph of the cycle C3 is the cycle C6. Its adjacency matrix A
is
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
0 0 0 1 1 0
0 0 0 1 0 1
0 0 0 0 1 1
1 1 0 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0

 .

The quadratic blocks are identical 2 1 1
1 2 1
1 1 2


and they have eigenvalues: 4, 1, 1, thus the adjacency matrix A of C6

has eigenvalues: 2, 1, 1,−1,−1,−2.
The subdivision graph of the star graph S4 has the adjacency matrix A

0 0 0 1 1 0 0
0 0 0 1 0 1 0
0 0 0 1 0 0 1
1 1 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0


.

The quadratic blocks are

 2 1 1
1 2 1
1 1 2




3 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1


.

We already know that the first block has eigenvalues: 4, 1, 1, thus
the adjacency matrix A of S(S4) has eigenvalues: 2, 1, 1, 0,−1,−1,−2.

All subdivision graphs of stars Sn have spectra derived from the spectra
of their line graphs GGT = I+JJT. The corresponding spectra are n, 1n−1

and it is easy to find their square roots. The signs are determined by the
zero trace of the adjacency matrix A.

15.12 Adjacency Matrices of Line Graphs

The quadratic form GGT of the incidence matrix G defines the line graph
L(G) of the parent graph G. A line graph is obtained from its parent graph
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if its edges are transformed into vertices which are incident if they have
in the parent graph a common vertex. The relation between the quadratic
form GGT and the adjacency matrix A[L(G)] of the line graph for parent
graphs with simple the edges is

GGT = 2I + A[L(G)] , (15.24)

where I is the unit diagonal matrix. Therefore there exists a relation
between eigenvalues the adjacency matrix A[L(G)] of the line graph

PL(A)(λj) = PGGT(λj − 2) . (15.25)

The line graph of the linear chain Ln is the linear chain Ln−1. The
subdivision graph of the linear chain Ln is the linear chain L2n−1.

Two conditions of the subdivision graphs (equation 15.11) and the line
graphs (equation 15.12) determine the relations between the eigenvalues of
the matrices of the linear chains as

Ln λj(GGT) λj(A)
n=2 2, 0 1, -1

3 3, 1
√

2, 0, −
√

2
4 2 +

√
2 , 2, 2 -

√
2 1.618, 0.618, -0.618, -1.618

5 3.618, 2.618, 2, 1.382,.382
√

3, 1, -1, −
√

3

These relations lead to the formula for the eigenvalues the adjacency
matrix A

A(Ln)(λj) = 2 cos jπ/(n− 1) . (15.26)

The linear chain Ln behaves as a rod fixed in its center. This is opposite
to a string which is fixed on its ends. Its vibrations are described by the
sinus function.

15.13 Oriented Subdivision Graphs

The adjacency matrices of the subdivision graphs derived from the inci-
dence matrices S of oriented graphs represent a more complicated problem.
Remember that an oriented graph is formed by arcs going from vertex j to
vertex i. Their incidence matrix S has in each row a difference of two unit
vectors (ei−ej). The quadratic form STS, from which the adjacency matrix
A is derived, has all its off-diagonal elements negative: STS = (V −A),
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where V is the diagonal matrix of vertex degrees vj . Therefore all elements
of the adjacency matrix of an oriented graph are usually positive2.

First it is necessary to solve the question of how the eigenvalues of
adjacency matrices having elements of both signs are related to eigenvalues
of the adjacency matrices with the uniform signs. A simple exercise in
matrix multiplication shows that the element aij of an adjacency matrix of
a line graph is negative, if both arcs have the same orientation (they meet
head to tail). To keep such orientations, all graph vertex degrees vj must
be 1 or 2, which is possible in linear chains and simple cycles. If three or
more arcs meet in a vertex then at least two of them must have the opposite
orientation, and in the adjacency matrix of the line graph the positive sign
appears. If a graph is bipartite, then it is possible to choose orientations of
arcs in such a way that all elements of the adjacency matrix are positive.
Because the quadratic form STS is independent on the orientation of arcs,
all quadratic forms SST of bipartite graphs must have identical spectra as
the quadratic forms SST with the uniform signs.

It can be concluded that the quadratic forms

SST = 2I±A[L(G)]

of the oriented linear chains Ln and the bipartite (n even) simple cycles
Cn have identical spectra, and that the adjacency matrices of their line
graphs must have eigenvalues having the form ±(λj ± 2)1/2. Simple cycles,
which are subdivision graphs of cycles with uneven number of vertices, have
eigenvalues in the form ±(λ2

j − 2)1/2. The eigenvalues of the subdivision
graphs of the bipartite graphs have eigenvalues ±(λ2

j + 21/2), where λj are
eigenvalues of the corresponding line graphs.

For the regular oriented graphs the relation (15.11) holds for all orien-
tations of the subdivision graphs. For other graphs it is necessary to solve
the effects of the different orientations of arcs in an oriented graph on the
spectra of the corresponding subdivision graphs individually.

15.14 La Verrier-Frame-Faddeev Technique

This technique is based on the properties of matrix products and their
relation with the products of eigenvalues

Sp(Mk) = Sp(λk
j ) . (15.27)

2Elements with both signs appear in the Laplace-Kirchhoff matrices of the comple-
mentary graphs of graphs with multiple bonds resulting from the Eichinger matrices E
which are pseudoinverses of the Laplace-Kirchhoff matrices STS (see next Chapt.).
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If we subtract from the matrix M the diagonal matrix of the trace
values Tr(I), we subtract the sum of eigenvalues from each diagonal value
of the matrix M. We name this difference matrix B1. Its product with
the matrix M has the eigenvalues formed by sums of pairs of different
eigenvalues of the matrix M

Sp[(M− TrI)M] = Sp(B1M) = Sp(Σλ2
j − Σλ2

j − 2Σλiλj) . (15.28)

The terms Σλ2
j eliminate themselves. Thus the trace of the product

is twice the sum of products of two eigenvalues of the matrix M which
is the coefficient a2 at xn−2. When subtracting this coefficient from the
diagonal of the product BM1 we obtain a matrix B2 which product with
the matrix M gives us on the diagonal the triple sum of the product of
three different eigenvalues of the matrix M:

Sp[(M− Tr(M)M− aI)M] =
∑

(λ3
j − λ3

j − 2λ2
jλj + 2λiλ

2
j − 3λiλjλk) .

(15.29)
In this way we continue n times or until we get in some step as the

result the matrix Bk = 0. We already used this technique for the matrices
in the triangular forms where only the first subtraction was necessary. For
example

M
3 1 1 1
1 2 1 0
1 1 2 0
1 0 0 1



B1
−5 1 1 1
1 −6 1 0
1 1 −6 0
1 0 0 −7


B2

7 −2 −2 −4
−2 9 −3 1
−2 −3 9 1
−4 1 1 13





228 CHAPTER 15. EIGENVALUES AND EIGENVECTORS

Figure 15.8: The proper (a) and improper (b) indexing of the cycle C4.
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B3
−3 1 1 3
1 −3 1 −1
1 1 −3 −1
3 −1 −1 −7


B3M

−4 0 0 0
0 −4 0 0
0 0 −4 0
0 0 0 −4


The polynomial is x4 − 8x3 + 19x2 − 16x− 1.
The problem of finding of polynomials is thus transformed to the basic

operations with matrices, subtractions and multiplication. Over each ma-
trix hovers the rainbow of the induced matrices which on its ends shows us
the polynomial and in it the spectrum of the matrix. The finding of the
eigenvalues can be sometimes, when solving technical problems, a pot of
gold at the end of the rainbow.

Notice that B3M is the diagonal matrix with equal values. It means
that B3 is a multiple of the inverse of M−1.

15.15 Collapsed Adjacency Matrices of Highly
Regular Graphs

Highly regular n dimensional graphs are graphs characterized by a square
matrix xA′ with dimension less than n, having the property, that each
vertex j is adjacent to a’ vertices i. The matrices A′ are known as the
collapsed adjacency matrices. Examples of the highly regular graphs are
the complete graphs Kn and the cycles Cn. Some indexing of vertices of
the highly regular graphs is proper, if it can be described by a collapsed
adjacency matrix. For example, the cycle C4 can be properly indexed as
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on Fig. 15.8. The indexing B is improper, since the vertices 2 are not
equivalent.

The collapsing of an adjacency matrix is achieved by the folding its rows
and the deleting of the corresponding columns:

AA
0 1 0 1
1 0 1 0
0 1 0 0
1 0 1 0


AB 0 1 0

2 0 2
0 1 0


AC(
0 2
2 0

) AD(
1 1
1 1

)
AE

(2)

The collapsed adjacency matrices seem to have an interesting property:
The polynomials of the collapsed adjacency matrices A′ are the divisors
of the polynomials of the adjacency matrices A. The conjecture is that
the regularly collapsed adjacency matrices have the same set of eigenval-
ues. The spectra of the collapsed adjacency matrices are truncated to the
greatest eigenvalues.

The polynomials of collapsed adjacency matrices A′ are:

P (AA) = x4 − 4x2;

P (AB) = x3 − 4x;

P (AC) = x2 − 4;

P (AD) = x2 − 2x;

P (AE) = x− 2 .

15.16 Factor Analysis

We have defined equivalence of graph vectors as classes of matrices which
can be obtained by the permutations of rows and or columns by the unit
permutation matrices P. The equivalent matrices have equal quadratic
forms, they are projected onto one point in the vector space. Now we
define another classes of equivalence against the common quadratic form,
or more generally against the common product.
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We say that matrices B and C are equivalent if

BTB = CTC , (15.30)

or a matrix BT is equivalent to the matrix U
and a matrix B is equivalent to the matrix V if BTB = UV.
For example, the following matrices are equivalent according this defi-

nition 
√

2 0 0√
1/2

√
3/2 0√

1/2
√

1/6
√

4/3

 ≡

 2 1 1
1 2 1
1 1 2

 .


√

3 0 0 0√
1/3

√
8/3 0 0√

1/3
√

1/6
√

5/2 0√
1/3

√
1/6

√
1/10

√
12/5

 ≡


1 1 0 0
1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1

 .

The existence of such pairs or multiplets has a somewhat unpleasant
consequence: If we know only a scalar product, we can not be sure if the
roots we found are true ones or only equivalent to the original parts of the
product.

But there is also good news in the existence of the equivalence: We can
replace an unknown matrix vector by the canonical triangular decomposi-
tion of its quadratic form. This is exploited by the factor analysis, when the
matrices of experimental results, containing stochastic errors are replaced
by the sums of matrices having great weights and the difference is left as
error matrix.

We have shown in Sect. 3.4 that an inverse matrix of a matrix in the lower
triangular form with the unit diagonal can be represented as the sum of
powers of the matrix itself. Now we show that a quadratic form can be
decomposed into a sum of factors, or its transposed eigenvectors Z:

ZMTMZT = ∆λj (15.31)

ΣλjZTZ = MMT . (15.32)

There exists a relation which is complementary to the equation 15.2

ΣZTZT = I . (15.33)
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For example: matrix Q  1 −1 0
−1 2 −1
0 −1 1


has three eigenvectors, (1, 1, 1)T; (1/

√
6,−2/

√
6, 1/
√

6)T, and (1/
√

2, 0,−1/
√

2)T,
which give three outer quadratic forms with multiplicities

A λj=0 1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3


B λj=3 1/6 −2/6 1/6

−2/6 4/6 −2/6
1/6 −2/6 1/6


C λj=1 1/2 0 −1/2

0 0 0
−1/2 0 1/2

 .

The corresponding sums are Q = 3B + 1C and I = A + B + C.
The outer quadratic forms of eigenvectors are factors of correlation ma-

trices. These correlation matrices are decomposed into their factors having
the greatest eigenvalues, which are normalized on 1. In our example it can
be said that the factor B explains 75% of the matrix Q and the factor C
the remaining 25%.

The factor decomposition is a valuable tool for explaining large cor-
relation matrices when few factors cover satisfactorily the greatest part
of the correlation matrix elements that the rest can be considered as a
stochastic error of the observation.
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Chapter 16

Inverse Matrices

16.1 Introduction

The inverse matrices were mentioned more times, but now they shall be
explained more systematically.

It is rather easy to define an inverse element to an isolated element, as
a number or a vector is. But this task becomes conceptually difficult for
whole systems represented by the matrix vectors. And it is mysterious how
to define inverse elements to objects. Can you tell, what your inverse is?
The answer will depend on the situation: do you search your inner inverse
as a person only, or an inverse element of you as a part of some system?

At first recall Sect. 3.4. There two types of inverse elements were
described, additive and multiplicative. The additive inverse is defined by
the identity a + b = 0, from it b = −a. The negative element has the same
value and opposite sign of its parent element. The multiplicative inverse
element is defined as the product ab = 1. From it b = 1/a and a = 1/a. The
distinction between an element and its inverse is determined by convention.
We have already shown that the multiplicative inverses are additive on the
logarithmic scale (Fig. 3.5).

For matrices the additive and multiplicative inverse matrices can also
be defined with the zero matrices 0 and the unit diagonal matrices I as the
unit elements, respectively. The additive inverses of M seem to be trivial,
they have only inverse signs −M, since M −M = 0. The multiplicative
inverses are much more interesting.

Nevertheless we already defined the complementary graphs Gn to the
graphs Gn by the equation:

233
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Gn + Gn = GKn
. (16.1)

The complementary graph together with the parent graph gives the
complete graph Kn. The matrices STS and STS can be considered as the
generalized additive inverses as we see later.

Now we consider the multiplicative inverses. We start with the unit per-
mutation matrices P which represent the symmetric group. Their inverses
are simply their transposes

PTP = I . (16.2)

For the diagonal matrices ∆M the inverse elements of dii are elements
1/dii. But when we combine a diagonal matrix with a permutation matrix,
its inverse is not a simple sum of both partial inverses.

The problem of the inverses is complicated for some asymmetric ma-
trices that have two different inverses, one from the left and one from the
right, because the multiplication from the left have another effect than the
multiplication from the right. And many matrices have no inverse, because
they are singular. Their spectrum contains some zero eigenvalues and their
rainbow does not close.

We can point in this context at the definition of the eigenvectors, Z
which give when multiplied with ZT the unit diagonal matrix. The trans-
posed matrix of eigenvector matrix ZT is the left hand side inverse of Z.

We have worked with the quadratic forms and it will be convenient to
define for these quadratic forms a third kind of inverses, the inner inverse
of the quadratic form as a matrix R which gives, if it is multiplied from
one side with a matrix M and from the other side with its transposed form
MT the unit diagonal matrix:

MRMT = I (16.3)

It can be expressed also conventionally, MR is the left hand side inverse
of MT and RMT is the right hand side inverse of M.

If we correct the product of the eigenvectors with their matrix inside
by the inverse eigenvalues, we get the unit diagonal matrix. Therefore a
matrix M weighted by the inverses of its eigenvalues is the inner inverse of
its eigenvector matrices. For example

(
1/
√

6 1/
√

6
1/
√

2 1/
√

2

) (
2 −1
−1 2

) (
1/
√

6 1/
√

2
1/
√

6 1/
√

2

)
=

(
1 0
0 1

)
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16.2 Matrix Inverting

We have shown in Chapt. 8 dealing with the matrices of combinatorial
numbers in triangular form, that their inverses are found by the inclusion
and exclusion technique. Another technique suitable for finding of inverse
matrices was already shown in the Sect. 15.13 as the La Verrier-Frame-
Faddeev technique. Both techniques are equivalent in the case of matrices
in lower triangular form having the unit diagonal. The n-th power of its
difference with the unit diagonal matrix gives the zero matrix 0. When we
write all terms of this power and rearrange them suitably, we get

I = [Mn−1 − nMn−2 + (n(n− 1)/2)Mn−3 . . .± nM1 ± I]M . (16.4)

The right side matrix in brackets is the left hand side inverse M of the
matrix in the lower triangular form M.

Similar structure, only somewhat more complicated, have the matrices
Bn−1 obtained by the Le Verrier-Faddeev-Frame technique, where coeffi-
cients of the polynomial are used for subtracting the multiples of the unit
diagonal matrix in different steps of the multiplication with the matrix M.

The inverse matrix is formulated using the determinant Det(M) and
determinants of all its submatrices δijM, known as the minors Aij . δijM
is the matrix M with the i-th row and the j-th column deleted.

The inverse matrix M−1 to a matrix M is the transposed matrix of its
minors Aij divided by the determinant. If the determinant is zero then the
inverse matrix is not defined from the obvious reason: If we divide by small
numbers close to zero, we obtain undetermined infinite numbers. This gives
also the answer to the question, what your inverse element is. It is your
minor. It depends on the properties of the world you live in.

For example, a magic square matrix and its inverse: 3 5 7
8 1 6
4 9 2

−1

= 1/360

 −52 53 23
8 −22 38
68 −7 −37


A practical technique for matrix inverting has two steps:

• First a regular matrix is decomposed into 3 matrices

M = LUP (16.5)

where L is a matrix in the lower triangular form, U is a matrix in the
upper triangular form and P is an permutation matrix.
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• It is easy to find corresponding inverses and the inverse is then:

M−1 = P−1U−1L−1 . (16.6)

A multiplication of a matrix with its inverse can be transformed into the
task of decomposition of its determinant according to its rows or columns.
If a row of minors is multiplied by a transposed row of the corresponding
matrix elements, we obtain the determinant and because the minors in the
inverse matrix are divided by it, the ratio is 1. If unmatched rows are
multiplied, it has the same effect as if the matrix had two identical rows
and the determinant given by this product is zero.

16.3 Walk and Path Matrices

We have shown how the inverse matrix elements are related to minors of the
matrix elements. But in some cases these inverses can be deduced directly
from the structure of graphs without no apparent connection to the minors
and determinants.

This is the case of matrices SST or GGT of trees. They have (n − 1)
rows and columns and are nonsingular because the corresponding quadratic
forms STS and GTG have just one zero eigenvalue. In a tree there are no
cycles and therefore there exist only one walk between each pair of vertices
(in the case of unoriented graphs we speak about paths). Matrices1 W
with rows corresponding to all walks or paths in a tree, and with columns
representing the arcs or edges, can defined. The elements wij of these
matrices are ±1 if the arc or edge j is a part of the path or walk i and 0
otherwise. The definition is complicated, especially for unoriented trees, by
the signs necessary to eliminate unwanted elements, when the walk matrices
are multiplied with the matrices GGT which all elements are positive. The
oriented trees can have the configuration of all arcs head to tail, since trees
are bipartite graphs. Then all off-diagonal elements of GGT are negative
and all elements of W positive. Otherwise wij has the positive sign, if the
edge j is in the even distance from the last edge in the walk (path) or the
arc j has the same orientation as the last arc, and it has the negative sign,
if the corresponding edge is in the odd distance from the last edge, or the
corresponding arc has the opposite orientation as the last one.

The path matrices of the oriented linear chains looks like the Petrie
matrices of complete graphs (see Sect. 13.3), only the elements of both
matrices have different interpretations.

1Only one symbol is used for both matrices for economy.
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The true inverses of quadratic forms GGT and SST are 1/n multiples
of the corresponding quadratic forms WTW, and matrices GTWTW and
SWTW are the right inverses of G or S, respectively, similarly as WTWG
and WTWS are the left inverses of G or S, respectively. The diagonal
elements of both quadratic forms count how many times the corresponding
arc or edge was used in all walks or paths, the off-diagonal elements count
common exploitations of the given pair of lines. These simply obtained
numbers are simultaneously minors of the corresponding quadratic forms
of the incidence matrices. The trace of WTW is the sum of distances
between the vertices in the tree. It is known as the Wiener number, see the
next Chapt..

The walk and path matrices of trees include all walks or paths of the
given tree, whereas the code matrices of trees include only the walks (or
paths) from the root. For the oriented trees both kinds of matrices are
related as

CST
K = −WT . (16.7)

For example:

-1 -1 0 -1 0 0
1 0 -1 0 -1 0
0 1 1 0 0 -1
0 0 0 1 1 1

1 -1 -1 0 -1 0 0
1 1 0 -1 -1 -1 -1 0
1 1 1 0 0 0 -1 -1 -1
1 1 1 1 0 0 0 0 0 0

.

16.4 Inverse Matrices of Uneven Unoriented
Cycles.

The incidence matrix G of a simple unoriented cycle Codd has in its canon-
ical form in each row two consecutive 1,

gii = 1, gi,i+1 = 1 [if i = (n + 1) then i = 1, gij = 0 otherwise . (16.8)

Both quadratic forms are identical, their elements are

gTgii = 2, gTgi,i±1 = 1 [if i = (n + 1)then i = 1 . (16.9)



238 CHAPTER 16. INVERSE MATRICES

We begin the search for the inverse for the quadratic form of a cycle
matrix CTC. It is easy to find it for small cycles, For example: for 7
member cycle this symmetrical matrix (GTG) starts as:

GTG

 2 1 0 0 0 0 1
1 2 1 0 0 0 0
...

...
...

...
...

...
...

 .

Its inverse (GTG)−1 = CTC starts as:

(CTC)

 −5 7 −5 3 −1 −1 3
3 −5 7 −5 3 −1 −1
...

...
...

...
...

...
...


This matrix is the quadratic form of the basic matrix C of uneven cycles

which elements are cij = (−1)d(ij). The upper d(ij) indices are the distances
of the vertices j from the diagonal vertex i. There are k positive elements
and (k+ 1) negative elements in each row and column, For example:

C

 +1 −1 +1 −1 −1 +1 −1
−1 +1 −1 +1 −1 −1 +1

...
...

...
...

...
...

...


Since C is symmetric

CTC = CCT = C2 . (16.10)

In quadratic forms the signs of the neighbor elements are always opposite
and their value difference is always 2. Therefore when multiplying CTC
with GTG, we obtain, for the diagonal elements:

1× (2− n) + 2× n + 1× (2− n) = 4 .

For the off-diagonal elements, we get:

1× [2(k − 1)− n] + 2× (n− 2k) + 1× [2(k + 1)− n] = 0 .

A similar result is obtained also for the middle elements ±(1, 1,−3) or
±(−3, 1, 1). The cycle matrix C has the required property of cycle matrices,
namely CG ≡ 0 mod 2. The neighbor elements are mostly (±1) and if
they have the equal sign then their sum is 2. The product is 2P, where P
is the unit permutation matrix of the cycle. The next product is

CGGT = 2(P + PT) .
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Figure 16.1: Examples of unoriented nonsingular cyclic graphs.

u
u u uA u uu u uu u uu

B C

This result will be interpreted in terms of colinearity and ortogonality later.
These properties of partial products allow us to define the pseudoinverse

matrices of G and GT from both sides:

G−1 from the right = 1/4GTC2 = ±1/2CPT (16.11)

and

G−1 from the left = 1/4C2CT = ±1/2PTC . (16.12)

The permutation matrix PT has the unit elements pi,i+(n−1)/2. If it
multiplies the matrix C from the right, it permutes its columns, if from the
left, it permutes its rows. Because the matrix C is symmetric, results of
both permutations are identical and the incidence matrix of an unoriented
uneven cycle has a true inverse. Moreover, if the cycle matrices act on the
quadratic form GTG from both sides, they diagonalize it, too:

CGTGC = 4I .

16.5 Inverse Matrices of Unoriented Cyclic
Graphs

The existence of the inverse matrices of quadratic forms of the incidence
matrices of simple unoriented cycles arouse the interest of possibilities of
finding the inverse matrices of these quadratic forms of incidence matrices
of cyclic graphs. From both quadratic forms GTG and GGT only the
matrix of lesser dimension can have the inverse. It means that for graphs
with two or more cycles only the form GTG can be nonsingular, because
GGT is of higher dimension.

Some examples of unoriented cyclic graphs having inverses of the quadratic
form were found easily (Fig. 16.1). Graph A has inverses of both quadratic
forms:
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GTG
2 1 1 0
1 2 1 0
1 1 3 1
0 0 1 1


4GTG−1


3 −1 −1 1
−1 3 −1 1
−1 −1 3 −3
1 1 −3 7


GGT


2 1 1 0
1 2 1 1
1 1 2 1
0 1 1 2


2(GGT)−1


2 −1 −1 1
−1 2 0 −1
−1 0 2 −1
1 −1 −1 1


Graph B

GTG
3 1 1 1
1 2 0 1
1 0 2 1
1 1 1 3


4(GTG)−1


2 −1 −1 0
−1 3 1 −1
−1 1 3 −1
0 −1 −1 2


Graph C

GTG
2 1 1 0 0
1 2 1 0 0
1 2 4 1 1
0 0 1 2 1
0 0 1 1 2



24(GTG)−1


17 −7 −3 1 1
−7 17 −3 1 1
−3 −3 9 −3 −3
1 1 −3 17 −7
1 1 −3 −7 17


16.6 Generalized Inverses of Laplace-Kirchhoff

Matrices

The Laplace-Kirchhoff matrices are named according to two famous scien-
tists. Laplace solved using these matrices motion of celestial bodies, Kirch-
hoff solved using these matrices motion of electrons in electrical circuits.
The Laplace-Kirchhoff matrices are matrices STS. They have positive di-
agonal elements and negative off-diagonal elements which are balanced as
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STSJ = 0; JTSTS = 0 . (16.13)

The Laplace-Kirchhoff matrices have one zero eigenvalue. It can be
removed if we add or subtract from the Laplace-Kirchhoff matrix a multiple
k of the unit matrix kJJT. Then we can find the inverse. If we add or
subtract from it again a multiple of the unit matrix kJJT, we obtain the
generalized inverse with the properties:

STS[(STS + kJJT)−1 + kJJT] = nI− JJT . (16.14)

For example:

STS 1 −1 0
−1 2 −1
0 −1 1


(STS + JJT) 2 0 1

0 3 0
1 0 2


(STS + JJT)−1

 2 0 −1
0 1 0
−1 0 2


(STS + JJT)−1) + JJT

 3 1 0
1 2 1
0 1 3


This is possible since the unit vector J is the zero eigenvector of the

matrix STS. Remember that nI− JJT is the Laplace-Kirchhoff matrix of
the complete graph Kn.

Among infinitely many generalized inverses of every matrix STS, the
special generalized inverse exists which is obtained by the Moebius inversion
of the matrix STS.

The main submatrices δjSTS, where j-th row and j-th column are
deleted, are nonsingular and have inverses. If these inverses are summed
up leaving j-th rows and columns empty, we obtain the Eichinger matrices
E which also have the properties of the generalized inverses:

E =
n∑

j=1

δjSTS (16.15)

STSE = nI− JJT . (16.16)

For example: as above:
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STS 1 −1 0
−1 2 −1
0 −1 1


(δ1(STS)−1

 0 0 0
0 1 1
0 1 2


(δ2STS)−1

 1 0 0
0 0 0
0 0 1


(δ3STS)−1

 2 1 0
1 1 0
0 0 0


E 3 1 0

1 2 1
0 1 3


The eigenvalues of the Eichinger matrices are the inverse eigenvalues of

the parent Laplace-Kirchhoff matrices except the eigenvalue corresponding
to the zero eigenvalue. This eigenvalue is equal to the sum of other (n− 1)
eigenvalues.

16.7 Rooting Technique

In Chapt. 13 we showed that the incidence matrices of trees are nonsingular
and that they have the inverses (S∗)−1, the code matrices C.

The rooting removes singularity not only of the matrices of trees but
of all graphs. The proof is inductive and formulated for the right inverse.
The matrix JJT is zero matrix to any Laplace-Kirchhoff matrix, since the
unit column is its zero eigenvector. But the matrix JJT adds to the place
of perturbation 1 in the given row and zeroes in the corresponding column.
The root row must be balanced. In other rows, the unit column is the zero
eigenvector, 1 on the diagonal is produced by the additional elements of
the partial inverse. Since the Laplace-Kirchhoff matrix is symmetrical, the
product of the partial inverse with the negative off-diagonal elements of the
root row must give -1. This leaves zeroes as the off-diagonal elements.

In the previous section the Moebius inversion of the Laplace-Kirchhoff
matrices were shown. This requires inverting of n submatrices. It is suffi-
cient to remove the singularity of the Laplace-Kirchhoff matrix by rooting
only one vertex, simply by adding 1 (or any number) to its one diagonal
element:

(δjS
TS)−1 + JJT = (STS + 1jj)−1 . (16.17)

For example:
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(STS + 111)C4
3 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2


(STS + 111)C4)

−1


1 1 1 1
1 7/4 6/4 5/4
1 6/4 8/4 6/4
1 5/4 6/4 7/4

 .

The weight of arcs is decreased for cycles Cn. The inverse of the dif-
ference (δ1STS)−1 is always the matrix SST of the linear chain Ln which
inverse is the quadratic form WTW of the path matrix. The chain forms
the spanning tree. Its square matrix must be decomposed into the triangu-
lar form and added to the matrix JJT. Since WTW, as defined, gives nI
as the product with SST, it is necessary to divide by n. An example of the
triangular decomposition:

WT

 1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 0 1 1


WTW 3 2 1
2 4 2
1 2 3

 =

Triangular decomposition
√

3/4 0 0√
1/3

√
2/3 0√

1/12
√

1/6
√

1/2


When the matrix elements of STS are interpreted as conductivities, then

inverse elements are resistances (or resistance distances). Two adjacent
vertices are connected in a circle Cn by two ways, either directly by the
connecting arc, or by the path of (n−1) arcs. If all arcs have the resistance
1 then the conductivity of both connections is 1, and 1/(n−1), respectively.
The conductivity of the circuit is n/(n−1), in our example 4/3. Two paths
between the opposite vertices in the even cycles have the resistances n/2,
their joined conductivity is 4/n, in our example 1.

The rooting technique at trees gives the same result as the code matrices.
The multiplicity k of arcs can be expressed as repeating of rows or by
weighting the arcs. These weights in the incidence matrices must be square
roots of the multiplicity k of the arc.

Elementary calculations show, that the multiplicity k of an arcs is de-
creasing the code of the vertex the arc is going in, as 1/k. For example the
tree:
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u u u
has three codes corresponding to roots 1, 2, 3, respectively:

Root 1 1 0 0
1

√
1/2 0

1
√

1/2 1


Root 2 1 0 0

1 1 0
1 0

√
1/2


Root 3 1 0 0

1 1 0
1 1

√
1/2

 .

16.8 Relations of Spectra of Graphs and Com-
plementary Graphs

The characteristic polynomials of Laplace-Kirchhoff matrices can be found
by the same techniques as the characteristic polynomials of adjacency ma-
trices, that is, by counting the characteristic figures in which the vertex
degrees vj represent the loops or by the Le Verrier-Faddeev-Frame tech-
nique.

The sum of the inverses of the Laplace-Kirchhoff submatrices (δSTS)−1

forms the generalized inverse E of the Laplace-Kirchhoff matrix giving as
the product the Laplace-Kirchhoff matrix of the complete graph STSK :

STSE = STSK . (16.18)

The generalized inverse E of the Laplace-Kirchhoff matrix is identical
with the matrix Bn−2 of the Le Verrier-Faddeev-Frame technique

STS = (STS)n − a1(STS)n−1 , (16.19)

where a1 is the coefficient of the characteristic polynomial and the
matrix (STS)n = (STS)Bn−1. The Frame matrices B are obtained as
Bn = (STS)n − anI. The last Frame matrix is Bn = (STSn − anI) = 0. It
means that

Bn−1 = 1/an−1(STS)−1 . (16.20)

In the Laplace-Kirchhoff matrices an = 0, therefore (STS)n = 0. Thus
Bn−1 = (STS)−1, and an−1 = n. It follows that

E = Bn−2 and E(STS)2 = nSTS . (16.21)

Moreover, if the Laplace-Kirchhoff matrix STSK of the graph Gn is
multiplied by (E− I), the Laplace-Kirchhoff matrix of the complementary
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graph G is obtained. From these results the relation of eigenvalues λj of
corresponding the Laplace-Kirchhoff matrices follow:

E(λj) = STS(n/λj) and STS(G)(λj) = STS(G)(n− λj) . (16.22)

The eigenvalues of the Laplace-Kirchhoff matrices of the pairs com-
plementary graphs must be complementary for giving as their sums the
eigenvalues of the complete graph Kn. For example, the star Sn is the com-
plementary graph of the complete graph Kn−1. Its spectrum is [n, 1n−2, 0]
which is complementary to the spectrum [0, (n − 1)n−2, 0] of the Laplace-
Kirchhoff matrix of the complete graph with (n− 1) vertices.

16.9 Products of the Laplace-Kirchhoff Ma-
trices

Two graphs are considered equivalent if their matrices can be transformed
by symmetrical permutations with the unit permutation matrices P into
each other: MGi

= PMGj
PT. An interesting problem arises: How are

related the eigenvalues of the corresponding matrices such operations. It is
customary to arrange eigenvalues in increasing or decreasing order, but if
a matrix is permuted, then also its eigenvalues should be permuted to give
different products and therefore they can not be in all equivalent graphs
arranged similarly in canonical form in an increasing or in decreasing order.

This means that an eigenvalue orbit can be defined which volume is
determined by the multiplicities of the eigenvalues.

When we multiply the Laplace-Kirchhoff matrices of twelve differently
labeled linear chains L4, we obtain 3 different results depending on the
number of common arcs and the given permutation. From these three we
are interested in two extreme cases:

3 common arcs


2 −3 1 0
−3 6 −4 1
1 −4 6 −3
0 1 −3 2

 .

The trace is the sum of squared eigenvalues (2+21/2)2+22+(2−21/2)2 =
16.

0 common arcs


2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

 .
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L4 is the selfcomplementary graph and in the product of the two self-
complementary graphs the eigenvalues are just multiplied in inverted order
as eigenvalues in the quadratic form:

Spectrum (L4) 2 + 21/2 2 2− 21/2 0
Spectrum (L4) 2− 21/2 2 2 + 21/2 0
Spectrum (C4) 2 4 2 0

The matrix product is the Laplace-Kirchhoff matrix of the cycle C4 and
its eigenvalues are not ordered because the cycle itself is permuted from its
standard form.

The result can be formulated in a theorem: If the Laplace-Kirchhoff
matrix of a graph with simple arcs is multiplied by the Laplace-Kirchhoff
matrix of its complementary graph, the eigenvalues of the matrix product
are the eigenvalues of the parent Laplace-Kirchhoff matrix multiplied with
eigenvalues of its complementary graph taken in the inverse order, except
the zero eigenvalue.

The proof: From the complementary properties of both Laplace-Kirchhoff
matrices it follows that their off-diagonal elements forming adjacency ma-
trices A have no effect on the trace of the product, Tr[A(G)A(G)] = 0.
Therefore the diagonal elements of the product are vj [(n− 1)− vj ] and si-
multaneously the trace is according to the theorem the sum of eigenvalues
products λj(n− λj):

Tr(STS(STS) =
n∑

j=1

[(n− vj)− v2
j ] =

n∑
j=1

[(nλj − λ2
j ) . (16.23)

The trace of the Laplace-Kirchhoff matrix is simultaneously equal to
the sum of vertex degrees Σvj and to the sum of eigenvalues Σλj , and the
trace of the squared Laplace-Kirchhoff matrix with simple arcs is

Tr([STS]2) =
n∑

j=1

(v2
j + vj) =

n∑
j=1

λ2
j , (16.24)

thus

Tr(STSSTS) = nTr(STS)− Tr([STS]2) . (16.25)

Going from the complementary graph and its Laplace-Kirchhoff matrix,
and inserting (n− 1− vj) we obtain the same result.

The proof used properties of graph matrices with simple arcs but the
relation between eigenvalues holds also for multigraphs and their comple-
mentary graphs as calculated from the relation:
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STS = STS(E− I) . (16.26)

This is the difference:

STS = (STS)K − STS . (16.27)

For example:

STS

-1 1 0
1 0 -1
0 -1 1

STS 3 -2 -1 -5 4 1
-2 2 0 4 -2 -2
-1 0 1 1 -2 1

Spectrum STS 3 + 31/2 3− 31/2 0
Spectrum STS −31/2 31/2 0

Spectrum STSSTS −(3 + 271/2) 271/2 − 3 0

The proof can be made simple by using formal notation:

[STS]2 + STS = STS (16.28)

(STS + STS) = STS(STS)K = (16.29)
STS(nI− JJT) = (16.30)

nISTS + 0 = nSTS . (16.31)

Or

Sp(λ2
j + λj [n− λj ]) = nSp(λj) . (16.32)

The unit vector-column J or the unit vector-row JT are the zero eigen-
vectors of the Laplace-Kirchhoff matrices of all graphs and the Laplace-
Kirchhoff matrices of all subgraphs of the complete graph Kn are not or-
thonormal eigenvectors to its Laplace-Kirchhoff matrix.

The consequence of the properties of the eigenvalues products is that
the spectra of selfcomplementary graphs (their Laplace-Kirchhoff matrices)
must be symmetrical, except their zero eigenvalue:
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n/2± (−λjn/2) . (16.33)

16.10 Systems of Linear Equations

A system of n equations with n unknowns can be written in the matrix
form as

Mx = b . (16.34)

The matrix of the coefficients is multiplied by the vector column x and
gives the vector column b.

The equation system has a solution if the matrix M is not singular.
Then

x = M−1b . (16.35)

We find the inverse matrix and multiplying it with the vector b we
should obtain the unknowns.

Another possibility to solve the system, provided that the matrix M is
not singular and its determinant is not zero, is the Cramer technique. We
construct the block matrix in the form:(

M b
J Σxj

)
. (16.36)

The last column of this matrix with m = (n + 1) rows and columns
is a linear combination of the first n columns. The weights are given by
the elements of the vector x. This is true also for the m-th row. The
determinant of the block matrix is zero and therefore when we develop it
according to the last row we get:

Σxj = ΣAmj/det(M) . (16.37)

Amj is the minor. The elements xj are simply corresponding ratios of
determinants. The disadvantage of this technique is that it needs many
calculations. Another disadvantage is usually not obvious.

If each row has its own weight vector, or if the vector b is combined
with an error vector, then the vector x can be far from all vectors xj . For
example: a matrix
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
12 4 3 2 1
14 5 5 3 2
14 5 5 4 1
16 6 6 6 3
16 6 8 4 3


has a well defined inverse and it gives to the vector b = (32, 46, 45, 64, 62)T

as the solution the vector x = (1, 1, 2, 3, 4)T. Inducing an error vector
r = (2, 0, 0, 0, 0)T which gives the vector b = (34, 46, 45, 64, 62)T, the vec-
tor b changes into (8.5,−24, 4, 5, 6)T. It means that a slight error induced
the error of the input vector (7.5,−25, 2, 2, 2)T, which completely distorted
the true vector, or a slight change of the specific vector x distorted the result
for the whole bundle of identical vectors. This property of vector systems is
very unfortunate, because we can not be sure, if we do not know the exact
values, using approximate values only, our reconstruction corresponds to
original values.
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Chapter 17

Distance Matrices

17.1 Introduction

Distances were mentioned before but now they and their matrices will be
studied systematically, using all our knowledge.

We can move between two points i and j on different paths. The length
of the path depends on circumstances, as on accessible ways, or means of
transportation. The length of the path between the points i and j is the
distance dij .

The topological distance matrices D are defined as matrices which off-
diagonal elements are the distances dij . These elements count the number
of arcs (edges) between vertices i and j in the graph. This is the least
number of edges or arcs which must be passed on a walk or a path between
both vertices. This is important in graphs with cycles where more walks
or a paths exist. The distances between disconnected blocks are defined as
infinite.

Such matrices distance matrices were used to characterize graphs in the
graph theory and nobody cared what was the meaning of the distances ob-
tained by simple counts of lines. Recently the distance matrices measuring
the Euclidean geometrical distances of corresponding vertices were intro-
duced and also the matrices with reciprocal distance values in chemistry.

The topological distance matrix D of a graph has the same unit ele-
ments as its adjacency matrix A. Both matrices are obtained by the same
operation described in Sect. 12.8 from the coordinate matrices.

The problem is demonstrated on the example of the coordinates of four
body in the vertices of the regular tetrahedron, spanned straight on an axis
or wound zigzag on the unit cube, respectively. There are three correspond-
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ing quadratic forms of three coordinate matrices CCT:

A
I2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


B(

0 1 2 3
)

0 0 0 0
0 1 2 3
0 2 4 6
0 3 6 9


C

0 0 0 0
0 1 0 0
0 1 1 0
0 1 1 1




0 0 0 0
0 1 1 1
0 1 2 2
0 1 2 3

 .

Multiplying the quadratic forms of these coordinate matrices with the
frame

S(∗)ST ,

where ST is the matrix
−1 −1 0 −1 0 0
1 0 −1 0 −1 0
0 1 1 0 0 −1
0 0 0 1 1 1

 ,

the six distances (differences of coordinates) between four points in
different configurations are found. These distances appear as the diag-
onal elements of the corresponding products. They are (2, 2, 2, 2, 2, 2),
(1, 4, 1, 9, 4, 1), and (1, 2, 1, 3, 2, 1), respectively. In all cases these numbers
are squares of the Euclidean distances.

These diagonals ∆D of n(n−1)/2 distances are reduced into the n dimen-
sional square matrix by framing with the incidence matrix of the complete
graph

ST∆DS = Q−D , (17.1)

where Q is the diagonal matrix of the row or column sums of the dis-
tances elements of the vertex i to all other vertices. The negative off-
diagonal elements show distances between corresponding pairs of vertices:



17.2. PROPERTIES OF DISTANCE MATRICES 253

A
3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3


B

13 −1 −4 −9
−1 6 −1 −4
−4 −1 6 −1
−9 −4 −1 13


C

6 −1 −2 −3
−1 4 −1 −2
−2 −1 4 −1
−3 −2 −1 6

 .

The first matrix A is identical with the Laplace-Kirchhoff matrix of
the complete graph K4. The second matrix B corresponds to squared Eu-
clidean distances between coordinates of the number axis. The off-diagonal
elements of the third matrix C are identical with the topological distance
matrix of L4.

17.2 Properties of Distance Matrices

The topological distance matrices D of the trees have an interesting prop-
erty. It was discovered rather recently by Rutherford. He found that D is
the inner inverse of the quadratic form of the incidence matrix:

SDST = −2I . (17.2)

The dimensionality of the distance matrix is reduced by this framing
on the dimensionality of the arc set (n − 1). The elements of the first
product, For example: DST, are differences of distances (BJ − BK) −
(AJ − AK). This difference at acyclic graphs is just the distance between
vertices connected by one arc, it means ±1, according to the orientation of
the arc. In the second product we get again the difference. The result of
(17.2) is the second difference which is negative.

We interpret this difference scheme as the symptom of the ortogonality
of (n-1) arcs in trees. The difference scheme with all arcs in the complete
graph:

SKDST
K (17.3)
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triangulates the positions of vertices in the space. The example distance
matrices above give following differences

A
−2 −1 1 −1 −1 0
−1 −2 −1 −1 0 1

1 −1 −2 0 −1 −1
−1 −1 0 −2 −1 −1

1 0 −1 −1 −2 −1
0 1 −1 −1 −1 −2


B

−2 −4 −2 −6 −4 −2
−4 −8 −4 −12 −8 −4
−2 −4 −2 −6 −4 −2
−6 −12 −6 −18 −12 −6
−4 −8 −4 −12 −8 −4
−2 −4 −2 −6 −4 −2


C

−2 −2 0 −2 0 0
−2 −4 −2 −4 −4 −2

0 −2 −2 −2 −2 0
−2 −4 −2 −6 −4 −2

0 −2 −2 −4 −4 −2
0 0 0 −2 −2 −2


.

The analysis of the difference scheme shows that the diagonal elements
are twice the length of the corresponding arcs. The off-diagonal elements
are interpreted as cosines of the angles between the corresponding arcs:

cos A = (b2 + c2 − a2)/2bc . (17.4)

After the normalization of the diagonal elements, we get in the case A
on the diagonal 1. The off-diagonal elements are 1, 0, and -1. When they
are divided by 2 × 1 × 1 they get 0.5, 0,−0.5. These values are cosines
of 600, 900 and 1200, respectively. These are angles between edges in the
regular tetrahedron.
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After normalization of the diagonal elements, we get in the case B on the
diagonal the distances 1, 4, and 9. Their square roots are 1, 2 and 3, the dis-
tances in the straight line. The off-diagonal elements are −2, −4, −6, −8,
and −12. When they are divided by the corresponding diagonal elements
as 2×1×1, 2×1×2, 2×1×3, 2×2×2, and 2×2×3, the fraction is always
1. This is cosine of 00, all distances between the points are collinear. This
correspond to the configuration of the straight line.

In the case B, we get on the diagonal 1, 2, and 3 after normalization
of the diagonal elements. One is the side of the cube, the square root of
2 is the diagonal of its side and the square root of 3 is its inner diagonal.
The off-diagonal elements are 0, −2, and −4. They are divided by the
corresponding diagonal elements as 2×1×

√
2, 2×

√
2×
√

2, and 2×
√

2×
√

3.
These are cosines of 35.260, 450 and 900, respectively. These are angles
between the arcs in the 3 dimensional cube as required.

17.3 Embeddings of Graphs

If we interpret distances through the arcs as the squared Euclidean geomet-
rical distances, then we can study the configurations of graphs embedded
into the graph space. Three configurations of the linear chain were already
mentioned.

The topological configurations of trees are obtained from the code ma-
trices and all arcs in the trees are orthogonal.

The conformations of cycles with even number of vertices are interesting.
The cycle C4 forms the square, each from its four arcs is orthogonal with
its both neighbors and collinear with the fourth arc:

DC4
0 1 2 1
1 0 1 2
2 1 0 1
1 2 1 0


SDC4S

T


−2 0 2 0
0 −2 0 2
2 0 −2 0
0 2 0 −2

 .

The cycle C4 bent on the regular tetrahedron with the distance ma-
trix corresponding to the distance matrix of the complete graph K4 gives
another matrix angles. The neighboring arcs form 60-degree angles and
each arc is orthogonal to its opposite arc. They form a pair which has no
common vertex.
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Figure 17.1: Three embeddings of the cycle C6.
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DK4
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


SDK4S

T


−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2

 .

There exist three embeddings of the cycle C6 onto vertices of the 3
dimensional cube. The first one is identical with the usual topological
distance matrix and leads to three collinear pairs of orthogonal arcs

DC6
0 1 2 3 2 1
1 0 1 2 3 2
2 1 0 1 2 3
3 2 1 0 1 2
2 3 2 1 0 1
1 2 3 2 1 0



SDC6S
T


−2 0 0 2 0 0
0 −2 0 0 2 0
0 0 −2 0 0 2
2 0 0 −2 0 0
0 2 0 0 −2 0
0 0 2 0 0 −2


.

Two another forms of C6 have some distances shorter and lead to the
another arrangement of collinear arcs.

DC6
0 1 2 3 2 1
1 0 1 2 3 2
2 1 0 1 2 1
3 2 1 0 1 2
2 3 2 1 0 1
1 2 1 2 1 0



SDC6S
T


−2 0 0 2 0 0
0 −2 0 0 0 2
0 0 −2 0 2 0
2 0 0 −2 0 0
0 0 2 0 −2 0
0 2 0 0 0 −2


.

The collinear arcs in the third conformation of C6 are (1-2 – 4-5), (2-3
– 1-6) and (3-4 – 5-6), respectively.
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The planar conformation of C6 has the following matrix and the result-
ing matrix of angles between bonds

DC6
0 1 3 4 3 1
1 0 1 3 4 3
3 1 0 1 3 4
4 3 1 0 1 3
3 4 3 1 0 1
1 3 4 3 1 0



SDC6S
T


−2 −1 1 2 1 −1
−1 −2 −1 1 2 1
1 −1 −2 −1 1 2
2 1 −1 −2 −1 1
1 2 1 −1 −2 −1
−1 1 2 1 −1 −2


where the angles are 1200, 600, 1800, 3000, and 2400, respectively.
The uneven cycles have each arc orthogonal to its neighbors on both

sides but the pair of its opposites forms 600 angles to it. This conformation
is obtained by a rotation of two consecutive right angles for 600 through
the given arc. The result appears for the arc closing the cycle:

DC7

0 1 2 3 3 2 1
1 0 1 2 3 3 2
2 1 0 1 2 3 3
3 2 1 0 1 2 3
3 3 2 1 0 1 2
2 3 3 2 1 0 1
1 2 3 3 2 1 0



SDC7S
T



−2 0 0 1 1 0 0
0 −2 0 0 1 1 0
0 0 −2 0 0 1 1
1 0 0 −2 0 0 1
1 1 0 0 −2 0 0
0 1 1 0 0 −2 0
0 0 1 1 0 0 −2


.

The distance matrices of complete graphs Kn can be expressed as D =
nJJT − I. The product is SJJTST = 0. Therefore

SDKST = −SST . (17.5)

The outer product of the incidence matrix of a graph with simple arcs
has on the diagonal 2. The off-diagonal elements are either 0, if the arcs
do not have any common vertex, or 1, if two arcs meet in a vertex. The
cosine of 600 is 0.5. Therefore the equilateral structures appear in complete
graphs. K3 is the equilateral triangle, K4 is the equilateral tetrahedron.
Six arcs of the equilateral tetrahedron form three pairs of orthogonal arcs.

The quadratic form of complete graphs can be formulated in the block
form using consecutively the (n− 1) complete graphs and unit vectors:
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ST −I
0 JT

S 0 SST −S
-I J −ST I + JJ

When the dimension of the complete graph increases, there will appear
(n− 3) orthogonal arcs to each parent arc.

Inserting the distance matrix of the star rooted in the n-th vertex into
SST of the complete graph, then we get for the star graph the product:

SKDST
K =

(
2SST −2S
−2S −2I

)
. (17.6)

The arcs of the star are orthogonal. The arcs connecting its loose ver-
tices have the double length (on the diagonal fours appear). These arcs
are the diagonals of the corresponding squares. This can be checked by
calculation of cosines. 2/81/2 is cosine of 450. The direct verification is
possible only for K5 with three orthogonal axes.

17.4 Eigenvalues and Eigenvectors

The distance matrices of straight chains have 3 nonzero eigenvalues: W +
a, -a and −W , where W is the topological Wiener number

(
n+1

3

)
. The

eigenvalue a has the following values:

n 2 3 4 5 6 7 8
a 0 0.4495 1.4031 3.0384 5.7272 9.0405 13.7494

The eigenvector of the smallest eigenvalue W has the elements vj =
−1 + 2(j − 1)/(n − 1) which weight the n consecutive squared numbers k
from −(n− 1) to (n− 1). It leads to the combinatorial identity

n/2∑
k=0

[1− 2k/(n− 1)][(n− 1− k − x)2 − (k − x)2] = 1− 2x/(n− 1) (17.7)

where x goes from 0 to (n− 1). If the chain increments are two vertices
then the change between the consecutive counts gives a possibility to use
full induction
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7/7× (25− 4) = 21
5/5× (16− 1) = 75/5 5/7× (16− 1) = 75/7
3/5× (9− 0) = 27/5 3/7× (9− 0) = 27/7
1/5× (4− 1) = 3/5 1/7× (4− 1) = 3/7

105/5 21 + 105/7

which is verified by direct calculations. For x = 0, the identity simplifies
to:

n/2∑
k=0

(n− 1− 2k)2 =
(

n + 1
3

)
. (17.8)

The eigenvalue a for the straight chains is produced by the reflection
plane (the elements of the eigenvector are symmetrical to the center of the
chain) and it forms the rotation tensor:

b = (a + W/2) = [Σd4 − 3/4W 2]1/2 . (17.9)

The proof is simple. Sum of squared eigenvalues must be equal to the
trace of the squared matrix, it means to the double sum of d4

(1/2W + a)2 + W 2 + (a− 1/2W )2 = 2Σd4 (17.10)

Solving the quadratic equation gives the result. Four eigenvalues (in-
cluding zero) can be expressed as W/2± (b or W/2).

We can compare three nonzero eigenvalues of the straight linear chains
with three distinct eigenvalues of topological distance matrices of stars. The
positive eigenvalue is the sum of all negative eigenvalues. There are (n− 2)
eigenvalues −2 and a special eigenvalue:

−a = (n− 2)/2 + [n2 − 3n + 3]1/2 . (17.11)

Corresponding eigenvectors for stars rooted in v1 are

a 1 1 1 . . .
0 1 −1/(n− 2) −1/(n− 2) . . .
1 −a/(n− 1) −a/(n− 1) −a/(n− 1) . . .

.

Due to the monotony of the distance matrices, all products can be
easily found. The eigenvalue a is obtained as the solution of the quadratic
equation

a2 + 2(n− 2)a− (n− 1) = 0 . (17.12)
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The planar conformation of C6 has the following eigenvalues:

12, 0, 0, 0,−6,−6

,
compared with two conformations of C6 embedded onto the cube

9, 0, 0,−1,−4,−4

,
and

8.424, 0, 0,−1.424,−3,−4

(two permutations with lesser distances).
The maximal eigenvalue of the even planar cycles on the circle with unit

radius is 2n and its eigenvector is the unit vector (this corresponds to 2n/4
for topological distance matrices). The even distances on the circle form
the right triangles over the diameter as the hypotenuse and their pairs sum
to 4.

17.5 Generalized Distance Matrices

Another matrix defining a graph is the adjacency matrix A which has
identical unit elements as the distance matrix and zero elements on places,
where dij are greater than 1.

It is possible to formulate the sets of generalized distance matrices Dk

where k is the power of the topological distance dij . Then the adjacency
matrix A appears as the generalized distance matrix D−∞) where in the
brackets is the infinite inverse power of the distances.

The matrix (JJT − I (otherwise the distance matrix of the complete
graph) is thus the distance matrix D(0). The changes of eigenvalues and
eigenvectors between the adjacency matrices A and the distance matrices D
are then continuous transformations produced by powers of given distances,
or in some cases, by changes of the geometrical conformations. We will
study some special examples.

17.5.1 Special Cases: Linear Chains

As an the first example we use linear chains, which exist in the form of stiff
rods. It was found that to express this geometrical property, it is neces-
sary and sufficient to write the distances dij as squares of linear distances.
The topological distance matrices are then just second power geometrical



17.5. GENERALIZED DISTANCE MATRICES 261

Table 17.1: Eigenvalues d* of the linear chain L5 Dk matrices
Distance power

j 1 2 3 4 5
−∞ 1.7321 1 0 -1 -1.7321
-2 2.1109 0.7376 -0.3024 -1.0501 -1.4960
-1 2.6166 0.3036 -0.5607 -1.0536 -1.3056

-1/2 3.1292 -0.1686 -0.7526 -1.0387 -1.1649
0 4 -1 -1 -1 -1

1/2 5.5279 -0.7959 -0.9187 -1.3178 -2.4955
1 8.2882 -0.5578 -0.7639 -1.7304 -5.2361
2 23.0384 0 0 -3.0384 -20
3 77.1665 2.2099 0.5776 -5.7441 -74.2099

distance matrices of linear chains bent on vertices of n dimensional unit
cube. Their apparently linear distances are squares of the corresponding
dij as diagonals in the n dimensional cube. In Table 1 eigenvalues of differ-
ent power distance matrices L5 are tabulated. This chain is long enough to
show main properties of such a system, where the second power geometrical
distance matrices always have only 3 nonzero eigenvalues.

All diagonal elements of the distance matrices are zero, and therefore
the sums of eigenvalues must be zero too. It is already well known that
eigenvalues of adjacency matrices of linear chains are 2 cos(2kπ/n + 1),
they form one wave. The eigenvalues of adjacency matrices form the lowest
limit to the eigenvalues of distance matrices with negative powers of k. The
greatest eigenvalue is continuously growing with the growing powers k. The
other eigenvalues have for k = 0 a pole. There all negative eigenvalues are
-1. For the nonnegative eigenvalues of A, it is the minimum, except the
lowest eigenvalue. This has there its maximum. The third singularity forms
when the power k = 2. There always only three nonzero eigenvalues exist.
Therefore the functional relation

λj = f(k) (17.13)

has three distinct regions which parameters can be found by linear re-
gressions.

The topological distance matrices of the chains, where the numbers of
arcs represent the distances between vertices, are either the first moments
of the geometrical distance matrices of straight rods, or simultaneously
geometrical square distance matrices of linear chains embedded onto the
n dimensional unit cube. The existence of the singularity at k = 2 is given
by the symmetry of the stiff rod. The moments according to its length
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axis are 0. The three nonzero eigenvalues can be identified with symmetry
elements as shown in Sect. 17.4.

The distance eigenvectors are rather interesting at any k. They are
usually symmetric according to the center, except for the zero eigenvectors
at k = 2, and degenerate −1 eigenvectors at k = 0 which are asymmetric.
The symmetry can be reflective (vj = vn−j , noted as σ), or rotational (vj =
vn−j , noted as C). These symmetries alternate for positive and negative
powers of k:

Eigenvector 1 2 3 4 5
k negative σ C σ C σ

The positive unnormalized eigenvector is the deformed unit vector col-
umn (row). In the adjacency matrices A, the values corresponding to the
unit vector are decreased on both ends, for the positive distance powers k
they are decreased in the center.

The fact, that the topological distance matrices as well the geometrical
distance matrices of the linear chains have n distinct nonzero eigenvalues is
consistently explained by their dimensionality. They have too many sym-
metry elements to be embedded in the 3 dimensions where three nonzero
eigenvalues are sufficient.

17.5.2 Special Cases: Cycle C4

Another exceptional case is the cycle C4, which can be bent from the regular
tetrahedron shape to the plane square by increasing two distances or to a
rod by decreasing them evenly. Its topological distance matrix is thus
undistinguishable from the second power geometrical distance matrix of
the square and the matrix [JJT − I] is one of the possible geometrical
conformations (similarly as for the chain L4, but there the adjacency matrix
is different).

At the cycle C4, the adjacency matrix A is simultaneously the distance
matrix of this cycle when vertices 1 and 3, 2 and 4 are identified and the
cycle is folded. If the distances of 1 and 3, 2 and 4 are not equal, it is also
possible to identify all the arcs of this cycle onto a line.

The eigenvalues corresponding to the distance matrix elements dij are
obtained by adding or subtracting simply the distances dij from the eigen-
values of A:

This scheme leads to the change of ordering of eigenvalues. The second
eigenvalue is obtained for the positive k as the fourth one. The distance
8 is geometrically impossible, it must be therefore the sixth moment of
the distance

√
2. The negative distances can be interpreted as squared
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Table 17.2: Eigenvalues d* of the cycle C4 Dk matrices
Eigenvalues of A 2 0 0 -2

Change of distances +d -d -d +d
Examples: d2

ij 0.25 1.75 -0.25 -0.25 -1.75
1 3 -1 -1 -1

1.414 3.414 -1.414 -1.414 -0.586
2 4 -2 -2 0
4 6 -4 -4 2
8 10 -8 -8 6

negative distances -1 1 1 1 -3

Table 17.3: Eigenvalues d* of the Dk matrices of rhombic cycle C4.
Distances
d2
13 d2

24 1 2 3 4
3 1 2 + 51/2 -3 -1 2− 51/2

4 0 2 + 81/2 -4 0 2− 81/2

1 0 (1 + 171/2)/2 -1 0 (1− 171/2)/2

distances in the complex plane. All distance matrices of C4 have the same
set of eigenvectors, corresponding to the Vierergruppe:

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 .

If we fold C4 as a rhomboid, we get diagonals of different lengths. Their
squares appear again as eigenvalues but in a complicated pattern, as in this
example:

The second case is the extreme, all vertices lie on a straight line. The
third case represents two double bonds bending to 600, or the adjacency
matrix of the graph on Fig. 13.2 b or a distance matrix of one of its
conformations. The eigenvectors are also deformed, going to lover values
and to higher ones again (in the third case it is 0.7808) and having zero
values which are possible for other conformations or moments, too:


0.6180(0.4142) 1 0.6180(0.4142) 1

0 1 0 −1
1 0 −1 0
1 −0.6180(0.4142) 1 −0.6180(0.4142)


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There exists a third deformation the cycle C4, corresponding to changes
of two distances. The square transforms in the rectangle, or the cycle is
formed from two chains L2.

Here the zero distance appears as the permuted adjacency matrix and
the changes are:

Distances d2 Eigenvalues
0 2 0 -2 0
1 4 0 -2 -2
4 10 0 -2 -8
8 18 0 -2 -16

All eigenvectors remain the same as for C4. It can be conjectured that
the topological distance matrix of the graph consisting from two compo-
nents L2 has two infinite eigenvalues, and the other two are 0 and −2. This
follows from the eigenvectors which remain identical disregarding of the
distances of both components. The eigenvalues are again determined by
the symmetry elements. Nonzero eigenvalues are three for the square and
two for the configuration corresponding to L2.

17.5.3 Special Cases: Two Cycles C4 (the cube)

Here we will study the formation of the cube from two cycles C4. The
adjacency matrix of two cycles C4 can be written similarly as for two chains
L2 in the block form as (

C 0
0 C

)
.

The adjacency matrix of the cube is(
C I
I C

)
The distance matrix of two squares has the form:(

D (D + dJJT)
(D + dJJT) D

)
The corresponding eigenvalues are tabulated. The other four eigenvalues

are either zero, or they have the same values with negative signs:
Eigenvalues of two coinciding squares in zero distance are just doubled

eigenvalues of one square. The third distance adds four times to the first
eigenvalue and subtracts four times from the second one.
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Table 17.4: Eigenvalues of two unit squares in distance d2.
Eigenvalue 1 2 3 4
Distance
A(cube) 2.618 1.618 0.618 0.382
A[2C(4)] 2 2 0 0
0 8 0 -4 -4
1 12 -4 -4 -4
4 24 -16 -4 -4
8 40 -32 -4 -4

There seems to be a pattern of how spectra of the lattice graphs are
formed. The spectrum of the straight chain L3 is 5.416, 0,−1.416,−4. The
spectrum of the square lattice formed by three L3 is 25.416,−12,−1.416,−12,
whereas 3 identified L3 have spectrum 13.348,−1.348,−12. These are
3 × (4.449,−0.449,−4), eigenvalues of L3. The eigenvalue corresponding
to the reflection moment is slightly changed.

Generalizing the distance matrices Dk to adjacency matrices is ambigu-
ous for the topological distance matrices of graphs which are embedded
differently from their standard configuration. For example, on a cube many
different graphs can be embedded. Their adjacency matrices are subgraphs
of the cube.

17.6 Nonlinear and Negative Distances

It was customary to use arbitrary distances in the distance matrices, as in
the traveling salesman’s problem. If we demand that the distances in the
distance matrices to be squared Euclidean distances, then it is necessary to
find an interpretation for the matrices where distances are longer or shorter
than possible.

A simple interpretation of longer distances is that they represent a path
on a curve. Here emerges a new problem, in the tensor SDST appear off-
diagonal elements, which give cosines of angles between arcs greater than
1. For example: the following matrices:

 0 1 4
1 0 1
4 1 0

  0 1 5
1 0 1
5 1 0

  0 1 6
1 0 1
6 1 0

  0 1 10
1 0 4
10 4 0


give the corresponding tensors
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 −2 −4 −2
−4 −8 −4
−2 −4 −2

  −2 −5 −3
−5 −10 −5
−3 −5 −2


 −2 −6 −4
−6 −12 −6
−4 −6 −2

  −2 −7 −5
−7 −20 −13
−5 −13 −8


If the hypotenuse is longer than the squared legs, the off-diagonal ele-

ments corresponding to cosines are projections of its square root onto legs.
It appears as if they were prolonged to correspond to its hypotenuse. If the
legs are not equal, the decomposition is unequal. For example:

1.1180 + 1.1180 = 51/2 ,

1.1068 + 2× 1.0277 = 3.1622 = 101/2 .

Only the portion corresponding to the unit length appears in the result.
The rule for the decomposition is again the cosine theorem (17.2). This
is true even for negative distances, which can be eventually interpreted as
squared distances in the complex plane. If the whole distance matrix is
negative, the sign changes only the sign of the result. But a combination
of positive and negative signs leads to cosines greater than 1, For example: 0 1 −1

1 0 1
−1 1 0

  −2 1 3
1 2 1
3 1 −2


Angles corresponding to cosines greater than 1 do not have sense in the

Euclidean space.



Chapter 18

Differential Equations

18.1 Introduction

The ancient Greeks were very good geometricians and had some knowledge
of algebra, but were not able to imagine a trajectory of a moving object as
a geometrical problem. Everybody knows the Zenon aporea.

It was a cultural shock, when Zenon came out with his discoveries.
Imagine, Achilles can never catch a turtle, if it has an handicap. Achilles
running it, the turtle changes its position, and remains ahead. Achilles
running the second handicap, the turtle changes its position, again, and so
in infinite many intervals. Ancients mathematicians did not find that a sum
of an infinite number of ever decreasing fractions is finite. But curiously
enough, they were not able to imagine the situation as a figure, as Fig.
18.1.

This simple plot of two straight lines represents both contestants which
are moving by constant velocities. One axis shows their scaled down geo-
metrical positions on the race course. The horizontal axis corresponds to
the time. To imagine the abstract time as the geometrical distance was an
invention which seems to be now obvious. Both lines can be represented by
equations and the point where both lines cross calculated. The ladder be-
tween both lines shows that the intervals are decreasing and they converge
into one point. The sum of infinite many terms is finite.

18.2 Analytical Geometry

It was Descartes, who with his analytical geometry found that a simple plot
of two straight lines solves the Zenon aporea about Achilles and turtle.

267
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Figure 18.1: Zenon plot of the Achilles and turtle aporea. The straight
lines are relations between the geometrical positions of both contestants
(vertical lines) and time (horizontal lines).
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Analytical geometry studies not only isolated points or vector strings
as we did till now, but sets of points related by functional relations. We
already constructed the number scales. Their lines can be rotated, shifted
and bent.

Let start with the matrix multiplication of a vector-column by a scalar:

x 0 1 2 3 4 5
y 1 0 1 2 3 4 5
y 0.5 0 0.5 1 1.5 2 2.5

The straight line of 6 points in the axis x was copied and projected into
the axis y The resulting positions of the original points in the axis b are
described either as

y = 1x

or as

y = 0.5x .

But this equation is true not only for the set of six points with natural
coordinates, but for all points lying between them on the straight line. The
equation of the straight lines in two dimensions has the form

y = a + bx (18.1)
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The term a represents the value of y when x = 0. In the given example
a = 0. The term a is the slope of the line determined as the ratio y/x, it is
tangents of the angle α. If we know y, we can find x solving the Equation
(18.2) as

x = (y − a)/b .

Two dimensional plane simplices are straight lines having the form

y + x = m , (18.2)

their slopes are negative, and they are defined only in the positive cone.
In the plain many straight lines can be defined. They can be parallel

or they can cross. Crossing takes place, when both coordinates x and y of
both straight lines are equal, as For example:

y = 2 + 3x

y = 3 + 2x .

We find the solution comparing both right sides

2 + 3x = 3 + 2x

and finally ve get x = 1. Inserting x back we obtain y = 5. Using
matrix technique, the system of two equations can be rearranged into the
polar form:

−3x + y = 2

−2x + y = 3

the inverse of the left side matrix(
−3 1
−2 1

)
is found as

(
−1 1
−2 3

)
.

and this gives, when multiplied with the vector bfb = (2, 3)T the solu-
tion (1, 5)T.
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18.3 Zenon Plots

Let us return to the Zenon aporea. We can follow separately the positions
of Achilles or the turtle. To do this we don’t need the time axis. The axis
x is the distance to the end of the course, y is the run away distance. For
example:

Interval 0 1 2 3 4 5 6 7 8
x 8 7 6 5 4 3 2 1 0
y 0 1 2 3 4 5 6 7 8

The relation of both values is described by the equation y = 8−x. The
constant a is the relative length of the course expressed by the velocity. It
is finite.

Another description of the motion is obtained when the baseline x rep-
resents the position in time t, the vertical axis y the position in time t + 1,
1 representing an interval of time ∆t. Let the coordinates of the measured
points to be for simplicity:

Interval 0 1 2 3 4 5 6 7 8
x 0 1 2 3 4 5 6 7 8
y 1 2 3 4 5 6 7 8 9

The motion is described by the equation y = 1 + x.
Now let the coordinates to change as follows:

Interval 0 1 2 3 4 5 6 7 8
x 256 128 64 32 16 8 4 2 1
y 0 128 192 224 240 248 252 254 255

The velocity of the motion is not constant, but it is decreasing expo-
nentially. The line depicting values x in different time intervals t on the
graph is bent (Fig. 18.2). To straighten it, we must use an logarithmic
transformation y = log x. Using binary base, we get the same values as
in the first example, the axis x represents the distance to the end of the
course, y is the run away distance.

Now again let the baseline x to represent the position in time t, the
vertical axis y the position in time t + 1, 1 representing an interval of time
∆t. The coordinates of the exponential curve are

Interval 1 2 3 4 5 6 7 8 9
x 0 128 192 224 240 248 252 254 255
y 128 64 32 16 8 4 2 1 ?
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Figure 18.2: Exponential curve. The decreasing distance intervals from
Zenon plot of the Achilles and turtle aporea are on the vertical axis, the
horizontal axis is the time.e
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The x values are growing, the y values are decreasing. Both changes are
not linear. Nevertheless, if the values x are plotted against the correspond-
ing values y, the plot is linear, see Fig. 18.3.

The plot represents the exponential changes, For example: the radioac-
tive decay or monomolecular chemical reactions if y is the starting sub-
stance, x is the product. The corresponding equation is

y = 28−t . (18.3)

The Zenon aporea is now transformed into its modern form, the ques-
tion, when the last radioactive atom will decay, and when their starting
number is x = 256.

We are now in a similar situation as the Greeks were. The decay of
radioactive elements is governed by an exponential law. The ratio of de-
caying atoms in equal time intervals ∆t is constant. To be sure that all
atoms decayed, we need infinitely many such intervals.

Essentially, the infinitely many intervals are needed only for the last
atom, if we demand certainty of its decay.

The graph of the process is the same as in the case of the runners, if
both axes, time and position, are replaced by positions (concentrations) in
consecutive time intervals, t and (t + 1) as if both positions were on two
different orthogonal scales. By doing so, these positions are considered to
be orthogonal, the exponential movement is transformed into linear, as if
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Figure 18.3: Linearization of the exponential curve. The decreasing dis-
tances between points correspond to the constant time intervals.
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we used the logarithmic scale1.

18.4 Markov Matrices

Markov was a Russian mathematician who got the somewhat childish idea
to study the order in which the consonants follow the vowels in a Pushkin’s
poem. After a consonant another consonant or a vowel can follow with some
statistical probability which is determined by the structure of the language
and its use by the author.

Markov studied probabilities of transitions of consecutive phonemes, as
consonants c and vowels v in the example

A vv A vc M cv A vc R cc K cv O vc V

Probabilities vv, vc, cc and cv are obtained from the direct counts by
dividing them with all possibilities of the transitions (here 7 transitions of
8 letters). When arranged among into matrices, they form the stochastic
matrices M which row sums are 1. The theory of processes connected with
these matrices forms a part of the theory of stochastic processes.

Each phoneme in a text is considered to be a state of the system which
fluctuates constantly between its possible states, forming a chain of consec-
utive events.

There is another possibility to interpret the phenomenon. A text can
be considered as a whole and all observed differences can form one transi-
tion into the next state. Or two distinct objects, represented by strings of
symbols, can be compared. The differences can be thus expressed as arcs
of a graph, for example

? A A M A R K O V
A A M A R K O V ?

c * 0 1 -1 1 0 -1 1 *
v * 0 -1 1 -1 0 1 -1 *

The two rows with the numbers form the transposed incidence matrix
ST of the multigraph with loops, zeroes are on places of loops, arcs begin-
ning and ending on the same site, the asterisks * mark the undetermined
start and end terms. It is possible to connect the last letter with the first
one for removing these loose ends.

1The linear movement is the limit of the exponential movement when the constant
k = 0
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Figure 18.4: Transitions of 2 letter strings. The direct transition cc ↔ vv
is impossible.
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Figure 18.5: Transitions of 3 letter strings.

ccc

ccv
U

q

vcc

�

?

cvc vcv
-

�

vvc

cvv

6

vvv
K

�

�

-

9
�

K �

U

The string is formed by differences (ei − ej) and it is clear that we can
write it as the incidence matrix of an oriented multigraph with loops. On
Fig. 18.4 the possible transitions of 2 letter strings are shown, on Fig. 18.5
the possible transitions of 3 letter strings are shown.

Such transitions are not limited to language. If we followed atoms of
the radioactive elements for some periods of time, then each atom either
remained unchanged, or it emitted a quantum of radiation, and changed
into an atom of another element. Here we do not know the indexing of
individual atoms, we can determine only their amount. The amount δx
of atoms, which decay in a time interval, is proportional to the number of
atoms x, the constant of proportionality being k, and to the length of the
time interval δt. The equation describing this process is

δx/δt = −kx (18.4)

The solution of this equation is found by separating of the variables in
the differential form (very short δt):

δx/x = δ(logx) = −kδt (18.5)

and integrating both sides and delogarithming the result

x = Aexp(−kt) , (18.6)

where A is the initial value of x as the integration constant. This solu-
tion has the above mentioned hook: We cannot be ever sure about the time
when the last atom in the system decays, there exist only probabilities.
This is the discrepancy between differential and integral calculus and finite
mathematics.
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The process can be visualized by two different plots, either we plot
concentrations against elapsed time as on Fig. 18.2, which is the tradi-
tional technique, or we plot the concentrations of the changing substance
xt eventually the concentrations of the product (1− x)t against these con-
centrations xt+1 or (1− xt+1), respectively after the constant time interval
∆t as on Fig. 18.3 The concentrations points on this plot form straight
lines which slopes depend on the velocity constants k.

Once again: The values of a function in two different time intervals
were treated as orthogonal vectors. In this way we obtained a plot of a
linear function from an exponential function, as if we found a logarithm of
the exponential function. The orthogonal projection gave the logarithmic
transformation of the exponential velocity of transformation of n atoms of
two kinds.

18.5 Multidimensional Systems

According of our definition, matrices of oriented graphs describe motions on
planes orthogonal to the unit vectors I. We are able to follow conveniently
the changes of concentrations of 3 components, which can be drawn on
equilateral triangles.

What is easy for two components becomes complicated for systems con-
taining n different components which can each transform into another with
different velocities kij . Nevertheless, the basics remain and such systems are
described by generalized Markov matrices M which off-diagonal elements
kij . are the rate constants of a system of equations 18.4 and the diagonal
elements are the sums of rate constants with negative signs −Σkij . The
diagonal elements are either the column sums if the matrix M acts on the
concentration vector column c from the left, or the row sums if the matrix
P acts on the concentration vector row cT from the right.

18.6 Transition Matrices

A transition matrix P is formed from two parts, the Markov matrix M and
the identity matrix I

P = (I + M) . (18.7)

M is the asymmetrically split Laplace-Kirchhoff matrix STS with the
negative signs on the diagonal which is normalized to the unit concentra-
tions. The transition matrices P have two limits: Either the identity matrix
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I, if no change occurs in the given time interval, or the permutation matri-
ces P, if all species are transformed into other one within one time interval.
We can suppose that each reaction (transition) in which an object is trans-
formed into another species, say a → b in a time interval δt is registered
in the incidence matrix S as the difference of two unit vectors (ei − ej).
These additive operators are transformed in the quadratic form STS into
the multiplicative operators which are normalized, it means the operator
kij is the ratio of transformed objects to all present objects, and the nor-
malized symmetrical quadratic form STS is split into the row operator Pr

and the column operator Pc

−STS = Pr + Pc . (18.8)

The adjacency matrices A which we used till now were the symmetri-
cal. They were obtained as the off-diagonal elements of quadratic forms of
incidence matrices of either an oriented graph S, or an unoriented graph G
(see Sect. 12.7).

Since the asymmetric adjacency matrices are used as the operators, it is
necessary to determine, how they are produced formally. When the vectors-
rows c are multiplied from the right, then aij = k, when k arcs go from
the vertex j in the vertex i, when vectors-columns c are multiplied from the
left, then aij = k, when k arcs go from the vertex i to the vertex j. We will
use subscripts r and l for the both kinds of the adjacency matrices A.

The orientation of arcs can be expressed by signs, where aij = +k, when
k arcs go from the vertex i in the vertex j, or where aij = −k, when k arcs
go in the vertex i from the vertex j, or opposite.

If each arc represents one transformation of the object j into the object
i, and the counts kij are normalized, kij ’s become the rates of reactions
known in chemistry as the monomolecular reactions, velocity together with
the corresponding sums Σkij on the diagonal with negative signs. When the
concentration (or coordinate) vectors c are multiplied by these operators,
the changes of concentrations are obtained, when the concentration vectors
c are multiplied by (I − P), the new concentration vectors are obtained.
We suppose, that concentration vectors are rows and the multiplication is
from right

cT
t+1 = cT

t M , (18.9)

therefore the sums Σkij on the diagonal are the column sums.
Let S and G be the incidence matrices of the same oriented multigraph,

where S and G are identical matrices except for the signs. An unoriented
edge corresponds to each arc. The rows of S and G are the mutually
orthogonal vectors.
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Figure 18.6: Reaction multigraph.
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The corresponding scalar products STG and GTS are the asymmetric
matrices showing differences in the orientation of arcs. As an example we
use the multigraph defined by the transposed incidence matrix ST (see Fig.
18.6)

ST


−1 −1 0 −1 0 1 −1
1 0 −1 0 1 −1 1
0 1 1 0 0 0 0
0 0 0 1 −1 0 0

 .

The elements of the matrix GTS are
−3 1 1 1
−1 1 1 −1
−1 −1 2 0
−1 1 0 0

 .

They can be interpreted as
vii = (arcs in - arcs out)
aij = (arcs out i in j - arcs out j in i),
then aij = 0 no arc.
The elements of the matrix STG are

−3 −1 −1 −1
1 1 −1 1
1 1 2 0
1 −1 0 0


They can be interpreted as
vii = (arcs in - arcs out)
aij = (arcs out i in j - arcs out j in i),
then aij = 0 no arc.
The off-diagonal elements of the matrix STG differ from the off-diagonal

elements of the matrix GTS only by signs. The scalar products STG
and GTS can be combined with the quadratic forms of incidence matri-
ces. There are four additive combinations
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STS
5 −3 −1 −1
−3 5 −1 −1
−1 −1 2 0
−1 −1 0 2


GTG

5 3 1 1
3 5 1 1
1 1 2 0
1 1 0 2


GTS + STS
2 −2 0 0
−4 6 0 −2
−2 −2 4 0
−2 0 0 2


GTS− STS

−8 4 2 2
2 −4 2 0
0 0 0 0
0 2 0 −2


GTS + GTG
2 4 2 2
2 6 2 0
0 0 4 0
0 2 0 2


GTS−GTG
−8 −2 0 0
−4 −4 0 −2
−2 −2 0 0
−2 0 0 −2

 .

This gives this pattern

GTS + STS = 2(Vin −Ar)

GTS− STS = 2(Al −Vout)

GTS + GTG = 2(Vin + Al)

GTS−GTG = −2(Ar + Vout) .

The scalar product (G − S)TS can be normalized into the left hand
side operator M. The diagonal matrices of vertex degrees (arcs in and
out), as well as the asymmetric adjacency matrices can be separated by the
transposing sums or differences GTS with GTG and combining them with
the sums or differences GTS with STS:

4Vin = (GTS + STS) + (GTS + GTG)T

−4Vout = (GTS− STS) + (GTS−GTG)T

−4Al = (GTS + STS)− (GTS + GTG)T
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4Ar = (GTS− STS)− (GTS−GTG)T .

The same operation with STG gives the pattern:

STG + STS = 2(Vin −Al)

STG− STS = 2(Ar −Vout)

STG + GTG = 2(Vin + Ar)

STG−GTG = −2(Al + Vout) .

The scalar product ST(G − S) can be normalized into the right hand
side operator M. The diagonal matrices of vertex degrees (arcs in and
out), as well as the asymmetric adjacency matrices can be separated by
transposing the sums or differences STG with GTG and combining them
with sums or differences STS with STS as above. These transposes are
identical with sums or differences of GTS, because the transposing changes
the ordering of matrices in the product.

The incidence matrices S and G, or their transposes, used as the mul-
tiplication operators, transfer each element of the multiplied matrix vector
twice, once on the diagonal, once as off-diagonal element. The sums or dif-
ferences of these matrices S and G, which should be transformed into the
quadratic matrices, have in each row exactly one element 2 in the ending or
starting column, respectively. The results are thus elementary. But these
facts are not explained in textbooks or in current literature. If they were
studied earlier, they were forgotten.

The double entry accounting of the arcs using the orthogonal vector
strings, their sums and differences, quadratic forms, scalar products and
transposes, gives a web of related matrices describing the graphs and to
them isomorphic objects and their transformations.

The Laplace-Kirchhoff matrix, identical with STS and used for solving
electrical circuits, is symmetrical. It actually describes only the properties
of the circuit, the resistances of lines (conductors) connecting the vertices
of the net. The direction of the flow is induced by the applied tension.
The matrix of currents corresponds to one from the matrices STG or GTS,
currents k in the branches always have the opposite signs

(STG)ij = −(STG)ij . (18.10)
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Moreover, flows in and out from all vertices must be balanced, Σkij = 0.
Since the resistance can be expressed as the length of a conductor, the
inverse problem appears as the resistance distances.

18.7 Equilibrium Concentrations

Finding the diagonal matrix C of the equilibrium concentrations cj∗ for
large systems is not a simple task. It requires calculations of the determi-
nants of all submatrices of the matrix product δjMC, obtained by deleting
the j-th row and column. Many variants of the Kirchhoff technique of
spanning trees were elaborated for this purpose.

Today the technical difficulties are removed by the use of computers but
a basic question remains open: is the product MC a symmetrical matrix or
not? Wei and Prater [?], who elaborated the matrix technique for solving
of systems of exponential equations, argued by the principle of microscopic
reversibility according to which the equivalence should be true:

c∗i kij = c∗jkji . (18.11)

The properties of the essentially positive matrices make the validity of
this principle doubtful. We use the properties of the eigenvalues of the
Markov matrices and will study the operator P = (I + M). This operator
transforms the concentration vector ct in time t into the concentration
vector ct+1 in time (t + δ).

18.8 Properties of Matrix Sums (I + M)

The matrices (I + M) have one eigenvalue exactly 1, the other eigenvalues
are in the circle 0 < λj < 1. The matrix M has exactly one eigenvalue
equal to zero and the remaining (n − 1) eigenvalues in the range limited
by the circle given by the rate sums Σ − kij . Because a transformation of
any species can not be greater that its concentration, the sum of the rate
constants must be lesser than 1. If the regular unit matrix I is added to
M, all eigenvalues are increased evenly by 1. This has an important con-
sequence which remained unnoticed: The equilibrium state of the operator
P has one eigenvalue exactly 1, all other eigenvalues are 0. The product of
any concentration vector c with the equilibrium operator (I + M)∞ must
give the equilibrium concentration vector c∗. Therefore (1/n)I(I + M)∞

has the form of n identical columns of the equilibrium concentration vec-
tors cT. Because the sum of concentrations is always Σn

j=1 = 1 this result
conforms with the condition c(I + M)∞ = c∗T.
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The other important property of the equilibrium operator is that its
product with the Markov matrix M must give the zero matrix 0: M(I +
M)∞ = 0. To show some consequences, we separate the equilibrium matrix
operator into the diagonal matrix C which elements are equilibrium con-
centrations c∗j and the matrix of off-diagonal elements [M(I + M)∞ −C].
The products with the Markov matrix have the following forms:

M =


−c∗1Σki1 c∗2k12 . . . c∗nk1n

c∗1k21 −c∗2Σki2 . . . c∗nk2n

...
...

. . .
...

c∗1kn1 c∗2kn2 . . . −c∗nΣkin

 .

M[(I + M)∞ −C]
Σi=1cik1i Σi 6=2(c∗i ki1 − c∗1ki1) . . . Σi 6=n(c∗i k1n − c∗1ki1)

Σi 6=1(c∗i k2i − c∗2k2i) Σi=2cik2i . . . Σi 6=n(c∗i k2n − c∗1ki2)
...

...
. . .

...
Σi 6=1(c∗i kni − c∗nkni) Σi 6=2(c∗i kni − c∗nkni) . . . Σi=ncikni

 .

The equilibrium condition is fulfilled if

n∑
j=n

c∗jkji −
n∑

i=n

c∗i kij = 0 . (18.12)

All flows in each position in the matrix must be balanced by all outflows
to keep equilibrium. For this the principle of microscopic reversibility is not
a necessary condition, but it is only a special case from all possibilities, how
the equilibrium can be reached.

Because any equilibrium state of the operator P has exactly one eigen-
value 1 and other (n− 1) eigenvalues are 0, it is easy to

find the corresponding eigenvectors. The unit eigenvector is the unit
row JT or the unit column J, respectively. The zero eigenvectors can be
chosen as any (n− 1) rows or columns of the Markov matrix. Any Markov
matrix is therefore a system of eigenvectors of its equilibrium state.

18.9 Classification of Markov Matrices

A Markov matrix describes its own equilibrium state and all the paths to
the equilibrium from any point of the n dimensional concentration simplex.
This simplex is a plane orthogonal to the unit vector I, For example: for
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3 substances it is an equilateral triangle. Each point of the simplex can
be the equilibrium point of the system and to each equilibrium point there
go infinitely many paths. Therefore it is necessary to classify the Markov
matrices according to the character of paths the matrix produces. If we
exclude matrices going to concentrations outside the simplex, there are
three possibilities. Easily they can be found for the two dimensional case:

A
p, q < 0.5(

(1− p) p
q (1− q)

)
B

p = q = 0.5(
0.5 0.5
0.5 0.5

)
C

p, q > 0.5(
(1− p) p

q (1− q)

)
• A: Smooth approach. The transformation lines are inside the frame

formed by the diagonal and the axis x. The determinant of P is
greater than 1. The first step can lead immediately to the equilibrium
concentration.

• B. Oscillating approach. This can be recognized simply by the re-
action constants. If kij > c∗j , then the system oscillates when the
reaction starts from the vertex of the reaction simplex ci = 1. In the
first step the concentration cj jumps over the equilibrium concentra-
tion. Here the time conditions should be studied, that is the relations
between the time intervals needed for transformation of an object into
another one. These intervals are surely different for n different objects
and whole reaction intervals. We can not suppose that all objects re-
act simultaneously and therefore the reaction intervals can be much
longer than the transformation intervals of individual objects. But
this difference induces lability and can lead to oscillations of other
kinds.

• C. The steepest approach. The reaction path should be a straight line
going from any concentration point to the equilibrium. This requires
that the reaction constants of each substance must be proportional to
the equilibrium concentrations of the target substances. For example:
for 3 substances: c1k12 = ac∗2 and c1k13 = ac∗3. From the microscopic
reversibility conditions c∗2k23 = c∗3k32 we obtain the relation of reac-
tion constants k23/k13 = k23/k12. For other two substances we obtain
similarly for c2: k21/k31 = k23/k12 and for c3: k31/k21 = k32/k12.
Comparing all three results, we see that such approach is possible
only for c∗j = 1/3, that is for the center of the simplex.
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The principle of microscopic reversibility assures the steepest approach
only on straight lines connecting the equilibrium state with vertices of the
simplex, one pure substance reacts or one substance is depleted from the
equilibrium state. It is a special path and it is questionable. It is much
easier to allow the existence of cyclic flows which must be balanced in
equilibrium by the condition for species in a cycle

kij = (k + k′)/c∗i , where k′ = c∗jkij . (18.13)

The steepest descent to the equilibrium might be the optimal path in
the concentration simplex, but it is not possible to prove that it is the only
possible path for all reaction systems and conditions. It is not possible to
prove that the matrix product MC is a symmetrical matrix. On the other
side, it is rather easy to find the conditions for the oscillating reaction sys-
tems. A sufficient condition is when kij are relatively great numbers. Of
course, such values violate conditions of differential reactions, it is assumed
that the increments δx/δt are infinitesimally small but the matrix multi-
plication shows why oscillations emerge: in one time interval there are not
sufficiently great concentrations of the backfeed products to balance the loss
cjΣkij if both values cj and Σkij are great. Because (I + M)b 6= (I + bM),
we cannot choose time intervals ∆t freely. They should be comparable with
intervals needed for reactions. If some reactions need substantially longer
times, oscillations emerge as in the Lotka-Woltera cycle.

18.10 Jakobi Approximations

We have shown the exact methods for solving the equation Mx = b in
Chapt. 16, based on the inverting of the matrix M or finding its eigenval-
ues. In case, when we are not able to do such sophisticated mathematical
operations, we can try to guess the right answer. We have counted the
matrices and we know, that if we limit ourselves to natural numbers, their
number is not infinite. Therefore, using computers, it is possible to find
the solution by the trial and error methods, especially, if the results are
compared with the target values and impossible combinations excluded.
This technique of fluctuation can be compared with the process by which
a system seeks its equilibrium.

Let us start with the guess vector y. After multiplication with the
matrix M we get the guess vector g. Comparing it with the target vector
b we obtain the difference dg−b. If it is zero, our guess coincides with
the searched vector and we can end our search. Similarly if the difference
dg − b is negligible we can stop our search. Otherwise we must correct
the original guess vector using dg − b. But we cannot apply the whole
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difference, because the next guess could be as a pendulum on the other side
of the true values. We must lessen the fluctuations. The correction must
be smaller than the difference, which is achieved by using a multiplication
constant c: 0<c<1. If we choose the constant too low, we need too many
steps to find an acceptable value of g, if c is too close to 1, the results could
fluctuate, similarly as was shown for the Markov matrices.
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Chapter 19

Entropic Measures and
Information

19.1 Distances and Logarithms

Maybe you know that information can be measured by its entropy

H = −Σpj log2 pj (19.1)

where the sum is made over all probabilities pj of objects (symbols).
These probabilities are unknown and we leave them at first undefined.

Nobody cared to explain, why this function is suitable as the measure,
it was just introduced as an axiom. We now define this function as a simple
result of mapping of m objects on vertices of a multidimensional unit cube,
or equivalently, indexing these objects by a regular code consisting from 0
and 1 symbols or simply by using binary number scale having equal number
of digits:

Decimal 0 1 2 3 4 5 6 7
Binary 000 001 010 011 100 101 110 111

The least necessary number of digits for each object from m objects is
close to log2 m. These digits count edges of a binary decision graph on
which leaves the counted objects are placed (Fig. 19.1) 1.

1Please arrange the leaves onto the vertices of the cube and draw the decision tree
yourselves. I tried it but my figure was too ugly. The cube as well as the decision tree
must be deformed.

287
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Figure 19.1: Binary decision tree is isomorphic with indexing of m objects
by binary digits.

u u u u u uu ue e e ee e
e

000 001 010 011 100 101 110 111

For all m objects we need at least m log2 m digits (in our example 24
digits). This limit is obtainable only if m is a power of 2. Nevertheless it
can be used for elementary calculations of logarithms with a satisfactory
precision. The number of digits mj is the distance of the leave j from
the root in the decision tree. Therefore the logarithms are related to the
distances.

Knowing that 35 = 243, we construct a binary decision tree with 1937
edges

• 128 * 8 = 1024

• 64 * 8 = 512

• 32 * 8 = 256

• 16 * 8 = 128

Till now 15 branches each with 16 leaves from 16 stems of the fourth
degree were used fully for indexing 240 leaves (objects) by 1920 digits.
The shorter tree budding from the last stem is used for the last three
leaves

• 2 * 6 = 12

• 1 * 5 = 5

The sum of the distances of the leaves from the root is 1937. Thus
1937 : 243 = 7.971. The result of the division is the mean distance which
equals to log2 34. The estimation of the binary logarithm of 3 is 7.971 : 5 =
1.597. Since lg2 3 = 1.585, the precision for such simple calculation is good
and could be improved using higher powers of the searched number close
to the power of the base number.
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The calculations can be done for any natural number of branches. As an
example: 510 = 9765625. The corresponding rooted tree with 10 branches
has the length somewhat lesser than 7, which is simply the number of digits.
Accepting this rough estimate, and dividing by 10, we get as the estimate
0.70000. The value obtained by the calculator is log10 5 = 0.69897.

After this excursion we return to the entropy function. If we have some
information about the counted objects, the necessary number of digits can
be decreased. Suppose, that the objects are already indexed by n symbols
of an alphabet. The new indexing can be composed from two parts, the
symbol j and the binary code proper for each specific symbol. Now we need
only Σmj log2 mj symbols. The difference

H = m log2 m−
n∑

j=1

mj log2 mj =
∑

mj/m log(mj/m) (19.2)

will be the measure of the information gained by dividing the set of m
objects into n labeled subsets. Introducing pj = mj/m and dividing the
result by the number m, we obtain the entropy Hm relative to 1 object.

For example: the string aaaabbcd and its permutations need only 10
digits:

Decimal 0 1 2 3 4 5 6 7
Binary a00 a01 a10 a11 b0 b1 c d

The normalized difference against the full tree H = (24− 10)/8 = 1.75
is the information entropy of the string2.

Unfortunately, this simple explanation does not explain the entropy
function H. This is only an approximation of its one form, based on the
binary logarithms.

19.2 Boltzmann’s Entropy Function Hn

On the Boltzmann’s tomb the formula

S = −k lnW , (19.3)

is engraved, where S stands for the thermodynamic entropy, W to
Wahrscheinlichkeit, that means probability, and k is a constant named in
honor of Boltzmann. This formula was the cause of his death. He died

2A reviewer of a prestigious education journal did not believed it and rejected my
paper.
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exhausted by vain efforts to prove it. Even his friends concocted aporea to
disprove Boltzmann’s ideas. His tragedy was, that nobody understood his
proof which I try to explain by this book.

The entropy was defined by Clausius by its difference. The entropy
difference is the ratio between the specific heat Q needed to increase tem-
perature T of some substance and the given temperature T: dS = dQ/T.
If the specific heat was constant, the integrated form would be

S = C log T + S0 . (19.4)

It is accepted that the entropy at absolute zero is zero. Therefore the
integration constant S0 must be −C log 0. But the entropy is much more
complicated function, because the specific heat Q depends on temperature
and has singularities, as the melting and evaporation heats are. We concen-
trate on the fact that the entropy is a logarithmic function of temperature.
What is the temperature? This is a measure of the thermal motion of
molecules 3. In a system of ideal gas, the molecules represented by points
move haphazardly and if they collide, they exchange their kinetic energy,
but the total amount of the energy at the constant temperature remains
constant. Moreover, if the system remains isolated, the distribution of ener-
gies of molecules reaches spontaneously an equilibrium. This is the largest
orbit, where the system is stable for long periods of time.

The entropy function is considered to be mysterious. Not only for its
abstract form (we do not feel it directly as the temperature, pressure and
volume) but for its property. It is increasing spontaneously. To decrease
the entropy needs an outside action.

We have shown that the surfaces of constant energy in the phase space
are planes orthogonal to the unit vector I. The system of the ideal gas
moves on this plane and for most of the time it remains on each orbit
proportionally to its volume. Therefore the system exists in the largest
orbit or orbits nearest to it for most of time. We already know the formula
for the evaluation of volumes of individual orbits. This is the polynomial
coefficient for n permutations

n!/Π nk! . (19.5)

The logarithm of this coefficient was proposed by Boltzmann as a mathe-
matical equivalent of entropy, the H function. If n and nk are large numbers,
and in the case of the ideal gas they certainly are (the Avogadro number,
determining the number of molecules in 1 mole of gas, is of order 1023), the
Stirling approximation of n! can be used and the result is

3According to a more sophisticated definition, T is an integrating factor.
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Hn = −Σ(nk/n) log(nk/n) . (19.6)

This result can be obtained only with natural logarithms, unlike in the
information entropy. Usually, the ratios nk/n are replaced by a symbol pk,
where p should be the probability.

Boltzmann’s problem was that he only conjectured the existence of the
quanta of energy (they were discovered in time of the Boltzmann’s death by
Planck) and that he, instead of speaking about symmetry of the partition
orbits, introduced ill defined probabilities pk which replaced the true ratios
nk/n.

One paradox against Boltzmann was connected with the time inversion.
The classical mechanics supposed that the time can be inverted. But such
time inversion should lead to the decrease of entropy. This could be taken
as an evidence against the H theorem. We have shown that space is not
insensitive to changes of signs, the negative cone has quite different prop-
erties than the positive one. Nevertheless the sign of the entropy changes
only classifies the natural processes. We can say that if a time inversion led
to the decrease of the entropy of a system then this time inversion is not a
spontaneous phenomenon, because its cause lies outside the system.

19.3 Maximal Hn Entropy

Searching the maximal value of the function 19.6 seems to be an easy task.
The entropy Hn is maximal when all values nj = 1. This monotone solution
has a fault: It can be achieved only at a special value of the arithmetical
mean m/n. The sum of the arithmetical progression 1 to n is

(
n+1

2

)
, there-

fore the arithmetical mean of values mj necessary for the linear distribution
is (n−1)/2, one half of the number of the objects. This value is acceptable
only at small systems.

At large systems as gas molecules are, the monotone distribution is
unachievable. The Avogadro number N is 6.023 × 1023 (one mole of hy-
drogen weights about two grams), the Boltzmann constant k (k= R/N) is
1.38 × 10−23 Joule/grad and the gas constant R is 8.314 Joule/grad. The
monotone distribution would require temperatures in Kelvin’s (centigrade
degrees) in the range of the Avogadro number.

The distribution of gas molecules can not be monotone. Nevertheless,
it must be as flat as possible.

We investigate at first relations of the means of some skewed distribu-
tions.

The straight slopes
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nk 6 5 4 3 2 1
∑

21 =
(
k+1
2

)
mk 0 1 2 3 4 5
nk ×mk 0 5 8 9 8 5

∑
35 =

(
k+1
3

)
give the arithmetical mean (k − 1)/3, approximately

√
2n/3.

The exponential slopes

nk 32 16 8 4 2 1
∑

63 = 26 − 1 = 2k+1 − 1
mk 0 1 2 3 4 5
nk ×mk 0 16 16 12 8 5

∑
57 = 26 − 7 = 2k+1 − 2k + 1

have the arithmetical mean for all sizes somewhat lesser than 1. Starting
mk values from the lowest value r, the arithmetical mean will be always r+1,
since we add to the basic distribution r × 2k+1 − 1 units. The exponential
slopes can be flattened by combining several such distributions:

nk 8 8 4 4 2 2 1 1
∑

30 = 2× (24 − 1)
mk 0 1 2 3 4 5 6 7
nk ×mk 0 8 8 12 8 10 6 7

∑
59

The arithmetical mean grows slowly and the slopes can be flattened by
equilibrating neighbor values.

A distribution can be symmetrical.
A straight distribution in the form of a ridge roof gives a somewhat

better result then the monotone distribution: Its arithmetical mean is in
the range of the square root of n:

nk 1 2 3 4 3 2 1
∑

16 = 42

mk 0 1 2 3 4 5 6
nk ×mk 0 2 6 12 12 10 6

∑
48 = 3× 42

The binomial distribution gives this result

nk 1 6 15 20 15 6 1
∑

64 = 26

mk 0 1 2 3 4 5 6
nk ×mk 0 6 30 60 60 30 6

∑
192 = 3× 26

If n = 2k then the arithmetical mean of the binomial distribution is k/2.
For the Avogadro number k ' 79 (279 = 6.045 × 1023). The arithmetical
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mean is very low. This means that the distribution can be flatter and
contain more values than 80.

The flatter binomial distribution can be modeled as

nk 1 1 4 4 6 6 4 4 1 1
∑

32 = 2× 24

mk 0 1 2 3 4 5 6 7 8 9
nk ×mk 0 1 8 12 24 30 24 28 8 9

∑
144 = 9× 23

The entropy can be again increased by leveling the slope as 1, 2, 3, 5, 5 . . ..
Try the triple binomial distribution and find the corresponding equations.

The increasing and decreasing exponential slopes:

nk 1 2 4 8 4 2 1
∑

22 = 23 − 1 + 24 − 1
mk 0 1 2 3 4 5 6
nk ×mk 0 2 8 24 16 10 12

∑
72

The distribution is composed from two components. The decreasing
exponential slope with n = 2k+1 − 1 parts has the mean value k + 1. The
increasing exponential slope with n = 2k − 1 parts has the sum nk ×mk =∑k−1

k=0 k2k. Its mean value is somewhat greater than (k− 2) but lesser than
k, since the last term in the sum is decisive. The arithmetical mean is
approximately k. The exponential slopes can be again flattened as before.

The entropy Hn would be maximal when the distribution would be as
flat as possible and approaching to the monotone distribution. If there
is room enough for all parts, the distribution will be symmetrical one,
otherwise it can be skewed one.

19.4 Shannon’s Entropy Function Hm

A statement from a recent abstract in Chemical Abstracts [15]: ”Boltzmann
entropy is an information entropy”, is typical for the state of art. It is
generally believed, that Shannon entropy function Hm is more sophisticated
and therefore better defined than Boltzmann entropy function Hn. But
both functions measure related but nevertheless different properties. They
can even be additive.

One can speculate, who was Jack with a Lantern, who changed the great
enigma connected with entropy into a greater error. Its consequences are
spread from mathematics, over physics, biology, social sciences to philoso-
phy.

J. Von Neumann gave this advice to Shannon [16]:
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Figure 19.2: Decisions from four possibilities.

“You should call it entropy, for two reasons. In the first place,
your uncertainty function has been used in statistical mechanics
under that name, so it already has a name. In the second place,
and more important, no one knows what entropy really is, so in
a debate you will always have the advantage.”

The basic idea of Boltzmann’s proof of the H theorem was not under-
stood and remained obscure (Kac [17] ”a demonstration”).

We have shown the derivation of the equation 19.1 and what it measures.
Shannon chose the function H deliberately from somewhat other reason. He
was interested in frequencies of symbols in messages (or in the ratios of the
individual frequencies mj of the individual symbols j to the total number
m of all symbols mj/m). The function H is additive when the decisions are
split as on Fig. 19.2

u u u u u u u u
e e e1/2

1/4 1/8
1/8 1/2

1/2
1/2

1/4
1/4

The most important difference of 19.2 against 19.6 is the maximal value
of both functions. Hm is maximal when all symbols have the same frequen-
cies which are equal to the arithmetical mean m = m/n. Then nm/n = n
(other nk = 0) and the entropy Hn is minimal, zero. The entropy Hm has
a cumulative effect on the distribution. It decreases its spread.

The fact of existence of two entropy functions explains the so called
redundancy of the information, since Hm in texts is not maximal. When m
entropy is maximal, n entropy is minimal and their sum is not optimal. If all
symbols appeared in our speech with equal frequencies, differences between
words were negligible and difficult to be noticed. There are 6 permutations
of aabb and only 4 permutations of aaab. But there exists 4 strings abbb on
the same partition and together 8 string.

It is better to explain it on words as basic vectors of information. We
must repeat words connected with the subject we are speaking about. These
key words which are necessary for understanding are more frequent. Chang-
ing word frequencies in messages according their subjects gives us opportu-
nity to formulate more different messages than if all words were used evenly
and to recognize immediately what is spoken about.

We have shown the simple interpretation of the information entropy.
Now we introduce this function as the analogy of the Boltzmann’s entropy
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Function Hn. This is the logarithmic measure of the polynomial coefficient
for n permutations n!/P i nk!. There exists the polynomial coefficient for
m permutations

m!/P i mj ! = m!/P ik!nk . (19.7)

There exist two polynomial coefficients, one for the n permutations,
the other for m permutations. What are the properties of the polynomial
coefficient for m permutations?

This coefficient determines how many strings can be formed from m
symbols on the alphabet of n symbols. In other words, how many different
messages have place.

The coefficient

m!/
n∏

j=1

nj =
∏
k≥1

nk!mk (19.8)

can be modified similarly as in the case of 19.6 using the Stirling ap-
proximation of m factorials. Of course, the problem is that the numbers are
rather small and the aproximation is worse. The result has the same form
as 19.6, except that pk are the relative frequencies of individual symbols.

There exists a decisive difference, the function Hm has maximum, when
all symbol are used evenly.

19.5 Distances and Entropy

To answer a question how many angels can be placed on a point of a needle
is not a task of mathematics, but to analyze the work of Maxwell’s demon
is, since this creature is still with us not only in physics but also in theory
of information.

The demon transformed a mixed string of cool molecules c and hot
molecules h

chchchchchchchchchchchchchchchchchchchch
into a string in the form
cccccccccccccccccccchhhhhhhhhhhhhhhhhhhh
Till now we considered both strings as equivalent, since both strings are

on the same orbit. When we imagine them in the two dimensional space,
both strings are distinguishable. Let fill a long string two volumes of a
book. We observe then both strings as two distinct states, one volume with
the hot molecules h has a higher temperature than the other one with cool
molecules c. The mixed strings (states corresponding to them) have an
intermediate temperature and higher physical entropy.
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Table 19.1: Logical functions
conjunction: if p and q, then (p and q)
alternative: if p and q, then (p or q)
implication: if p and q, then (p is q)

p q conjunction alternative implication
1 1 1 1 1
1 0 0 1 0
0 1 0 1 0
0 0 0 0 1

The problem is to find a way how to measure their difference. One
possibility is to express it using distances between symbols of one kind. For
such short strings it is necessary to close them to a loop, to avoid truncation
problems connected with both ends.

The distances between symbols c are then
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
and
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,20, respectively.
The distances between symbols h are here the same.
The distribution of distances in both cases is quite different and the

effect of mixing can be measured exactly as for the original strings by the
polynomial coefficients.

The distribution of distances in the binomial distribution is known as
the negative binomial distribution. For more symbols we can speak about
the negative polynomial distribution.

19.6 Logical functions

Our thinking is governed by logical laws, as conjunction, alternative, impli-
cation or other logical functions are. Some predicate can be true or false.
The true predicate has value 1, the false predicate has value 0. Now there
are known many valued logic or the fuzzy logic, when the false predicate
can have any value between 1 and 0. Two predicates are combined and the
result depends on the law which must be applied.

The logical decision p can be represented by a tree with two branches.
The left one means true, its value is 1. The right branch means zero. On
the corresponding branch is grafted the tree for the second predicate q. To
the ends of its branches the new logical values are attributed according to
tables of logical functions.

The conjunction function is obtained by usual multiplication of p× q.
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Figure 19.3: Decision tree. The left branch means 1, the right branch means
0. The root is taken as the decimal point.

uu uu u
1.0

0.1 0.0

The tree valued logic, allowing values 1, 0.5 and 0 can be represented by
a decision tree with more branches, when the binary point is placed after
the first value (Fig. 19.3). The value 0.1 means zero and 2 , it is 0.5, since
1 is 2. 0.0 is rounded to 0. The right branch could have values 1.1 and 1.0,
but the values greater than 1 are truncated.

The logical operations can be viewed as operations of symmetry, at-
tributing to different points of logical space given values.
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