return to main page

ATTENTION !  May be best viewed by INTERNET EXPLORER 5.0 or HIGHER

THEOREMS  OF  EL'ADL  STATES  THAT ;


PART-1
If    (m > 1)    is   any integer   ,  and  p  is  any  odd  prime.
Then  the following  relations  hold  true ;

Cos[p.ArcCos(m)] º m  Mod  p

 

Cosh[p.ArcCosh(m)] º m  Mod  p

 

Cos[p.ArcCos(m)] =Cosh[p.ArcCosh(m)]

 

where  (m,p) = 1


For a proof of the fact that , left  hand sides of  the relations  are  integers ;
please click here .This   theorem   sieves   off   many   of  the  CARMICHAEL  NUMBERS.
As a matter of fact, perhaps these kind of  theorems   contain less  CARMICHAEL type of numbers,
when you encounter with a pseudoprime to a certain  m ;  just change it . Then the congruence may
hold  true . Now  that  means  there  are  less  pseudoprime  to  all  bases .
Please click here to see the related Mathematica program


PART-2
If    k  ,    are  the  perpendicular  legs  of  a  right  triangle. and   p is  any odd  prime  ;
where  k , m  are  any  integers  .
 

 
Then  we'll  have  the  following  relation ;
 

 

where  (k,p) = 1

 
For  a  proof  of  the  fact  that , left  hand  side of  the relation is an  exact  integer ;
please  click  here .  This    theorem   sieves   off   many   of   the   CARMICHAEL  NUMBERS.
As a matter of fact, perhaps these kind of theorems  does't contain the concept of CARMICHAEL type of numbers, when you encounter with a pseudoprime to a certain  k , m ;  just change one or both  of   them .
Then the congruence holds true . Now  that  means  there  is  no  pseudoprime  to  all  bases   concept.
Please click here to see the related Mathematica program


PART-3
If    (m > 1)    is   any integer   ,  and  p  is  any  odd  prime.
Then  the following  relations  hold  true ;

Sin[p.ArcSin(m)] º (-1)( p-1) / 2 . m  Mod  p

 

where  (m,p) = 1

 

For a proof of the fact that , left  hand sides of  the relations  are  integers ;
please click here .This   theorem   sieves   off   many   of  the  CARMICHAEL  NUMBERS.
As a matter of fact, perhaps these kind of  theorems   contain less  CARMICHAEL type of numbers,
when you encounter with a pseudoprime to a certain  m ;  just change it . Then the congruence may
hold  true . Now  that  means  there  are  less  pseudoprime  to  all  bases .
Please click here to see the related Mathematica program


 PART-4
If    (m > 1)    is   any integer   ,  and  p  is  any  odd  prime.
Then  the following  relations  hold  true ;

Sinh[p.ArcSinh(m)] º m  Mod  p

 

where  (m,p) = 1

 

For a proof of the fact that , left  hand sides of  the relations  are  integers ;
please click here .This   theorem   sieves   off   many   of  the  CARMICHAEL  NUMBERS.
As a matter of fact, perhaps these kind of  theorems   contain less  CARMICHAEL type of numbers,
when you encounter with a pseudoprime to a certain  m ;  just change it . Then the congruence may
hold  true . Now  that  means  there  are  less  pseudoprime  to  all  bases .
Please click here to see the related Mathematica program


return to main page