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PREFACE 3

Preface

Neural networks have been a hot field in recent years. One of the reasons is
that they are now used for practical decision making through computer software
and hardware. However, unlike widely-used methods such as statistical decision
and linear programming, validity of applying neural networks is uncertain, since
limitations in application, methods of evaluating errors, and the like are not estab-
lished.

Information processing on a neural network is mathematically summarized as
threshold transformations. Because of its non-linearity, threshold transformations
are hard to analyze. However, clarifying mathematical properties of threshold trans-
formations is essential for valid applications.

Various models of neural networks have been proposed. However, according to
Amit, they fall basically into two types, feed forward networks and attractor neural
networks. In essence, a simple network of the first type is a threshold transforma-
tion from the state space X = {−1, 1}n into the state space Y = {−1, 1}m, and a
simple network of the second type is a threshold transformation into X = {−1, 1}n

to itself, that is, a threshold transformation of X. The first type is mainly con-
cerned with the function itself regarding the state spaces X and Y as different.
A network of the second type is concerned with the dynamical system generated
by the transformation. Kamp and Hasler’s book, which contains most prior main
results on the second type, calls it a recursive neural network. I call it a dynamical
neural network (DNN). The DNNs more closely approximate central nervous sys-
tems, and mathematically more interesting. But, what is an attractor in a neural
network? Strangely enough, you can not find its definition in a book of Amit or
Kamp and Hasler. Amari and others defined some kinds of attractors called sta-
bility, but they are too limited to be established as standards. Therefore, I had to
start with the groundwork of defining basic concepts in the finite-state dynamical
system (Chapter 6.1).

I first came into contact with the classical neural network model of McCulloch
and Pitts in the early 1970s, but did not find any mathematically significant results,
so that I was not much interested in that. Then in the mid 70s, I was informed
of Arimoto’s theorem (published in 1963) by M. Sato at the applied mathematics
section of a semiannual meeting of the Mathematical Society of Japan. When I
visited Arimoto at his office in Osaka University to get a copy of his paper containing
the result, he expressed a negative opinion about the neural network model because
of its excessive simplification of reality and rather discouraged me to go into that
field. But I had different criteria, and soon later, got the concept of the variation
of a Boolean transformation and minimal Boolean transformations. The variation
of a transformation of {−1, 1}n is the total number of coordinates of {−1, 1}n

changed by the transformation. A transformation F is minimal if the variation of
F is equal or less than the variation of any transformation G such that G = TF
for some orthogonal transformation T . In particular, the only minimal orthogonal
transformation is the identity I. However, I could not utilize the concepts for the
study of threshold transformations at that time.

Without much progress, I interrupted the study of mathematical science, partly
because I was disappointed with my ability in mathematics and partly because I did
not expect I could ever touch reality through mathematical science. I left Japan
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in 1981 to come to the United States, and studied psychology, philosophy, and
literature in most of the 80s.

By the time I restarted the study of threshold transformations in the late 80s,
my notion of reality had changed. The environment concerning neural networks
had also changed owing to the spreading of their practical application to signal
processing and various decision making and also owing to the much publicized work
of Hopfield. Further, I could easily simulate a model and implement an algorithm,
since I had owned a personal computer for word processing. Soon, I succeeded
in obtaining several simplest one-to-one threshold transformations for the purpose
of extracting their non-linear properties, by introducing [ ]-representations of self-
dual transformations and focusing on the class of minimal circular transformations
(Chapter 4.4). The [ ]-representations are effectively used throughout this seminar
note.

The concepts of minimal and circular Boolean transformations also led me to
attack and solve an outstanding hard problem of constructing a kind of Gray code
for necklaces. The results are both theoretically and practically significant in the
area of combinatorial Gray code, but outside the scope of this seminar note.

For years I had been unable to utilize my results on one-to- one threshold
transformations for the study of neural networks. Then just after the New Year’s
Day of 1995, the idea of incorporating spontaneous firing suddenly came to my
mind with its relation to maximal or minimal threshold transformations, when I was
browsing in Amit’s book, Modeling Brain Function, at a book store. For me, it was
l’oeuf de Colomb (Columbus’s egg). Amit’s book was defective, because it did not
distinguish attractors from limit cycles, but it discussed maximum, minimum, and
average firing rates. And I recalled spontaneous firing, which I had almost forgotten
but had learned in an undergraduate course at the University of California at Santa
Cruz that used the first edition of Kalat’s text book, Biological Psychology.

In my primitive DNNs, the prototype DNN, in which each neuron is discon-
nected from each other and performs spontaneous firing at rate 1/2, is represented
by a transformation −I, which is the maximal orthogonal transformation. Thus
the concept of minimal threshold transformations is related to a primitive DNN
model that incorporates spontaneous firing. In fact, if F is a minimal threshold
transformation, then −F generates a primitive DNN, and an attractor of F is easily
converted to an attractor of −F .

However, my earlier and primary objective was to clarify non- linear properties
of threshold transformations. That is why I concentrated on one-to-one threshold
transformations in the first place. The readers will find that a main difference be-
tween a linear one-to-one transformation, that is, an orthogonaltransformation,
of {−1, 1}n and a non-linear (i.e. non-orthogonal) one-to-one threshold transfor-
mation of {−1, 1}n is the selectiveness in the latter. For example, in a conventional
digital computer, its CPU performs, in one machine cycle, parallel processing of a
basic unary operation such as one-bit right rotation or complementation of any data
word, which is a member of the set of n-bit binary strings Qn = {0, 1}n. These
operations are isometries, which are equivalent to orthogonal transformations of
{−1, 1}n. On the other hand, a CPU capable of non-linear threshold transforma-
tions can perform, in one machine cycle, a selective rotation or complementation in
that, if n is even, a data word is rotated only when one arbitrarily predetermined
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n-string or one of those obtained by rotating it is loaded into the register. Simi-
larly, a data word is complemented only when it is one arbitrarily predetermined
n-string.

Studying one-to-one threshold transformations is also good preparation for neu-
ral networks, since not only common methods can be applied to the two subjects,
but also a DNN having an attractor is often constructed by modifying a one-to-one
threshold transformation. In fact, an enhanced Arimoto theorem in Chapter 5.5,
and most attractors in Chapter 6 were obtained in this way.

Meanwhile, in the process of seeking for one-to-one threshold transformations,
I sometimes found it harder to prove a given transformation to be one-to-one than
to be a threshold transformation. Then I discovered that most one-to-one minimal
threshold transformations are reflective. Further, proof that a complex threshold
transformation is one-to-one is comparatively simplified by proving it to be reflec-
tive. By a reflective transformation I mean a one-to-one transformation such that
its inverse is orthogonally similar to itself. This kind of transformation had already
appeared as a binary-reflected Gray code. It also includes isometries of Qn, as I
proved in Chapter 3.2. At present, I have not found any one-to- one threshold
transformation that is incompressible, minimal, and non-reflective. By compres-
sion, some of the minimal threshold transformations can be further reduced to
simpler ones (Chapter 5.2).

The readers may be somewhat confused by the use of both {−1, 1}n and Qn

throughout the seminar note for the domain of threshold transformations. How-
ever, this use is by no means accidental. Threshold transformations are connected
with two different mathematical structures: the real n-space Rn and the Boolean
algebra. Such concepts as linear separability and orthogonal transformations be-
long to the first. The use of {−1, 1}n is comfortable in this context. On the other
hand, any Boolean transformations Qn can be expressed in compact form using
the Boolean operations ∨ (OR) and · (AND) in the Boolean algebra Q, so that the
use of Qn allows us to treat threshold transformations as a special class of gen-
eral Boolean transformations. Moreover, the Boolean operations ∨ and · are basic
non-linear threshold functions from Q2 to Q, so that threshold transformations can
be effectively dealt with in terms of Boolean operations. Therefore, we use both
{−1, 1}n and Qn depending on demands.

The shortcoming that the firing rate of any neuron can not exceed 2 times the
spontaneous firing rate in the primitive DNN model on the state space X = {−1, 1}n

described in Chapter 6 is due to a greater problem that any state x(t + 1) depends
only on x(t) for a given efficacy matrix E and time t. Therefore the postsynaptic
potential (Ex(t))i is spatial summation. However, the postsynaptic potential should
also include temporal summation to simulate real nervous systems. Therefore, a
primitive DNN model with temporal summation and spontaneous firing rate 1/3
is described in Chapter 7. That DNN is no longer a dynamical system on X =
{−1, 1}n, and generated by a threshold function from X × X to X. The results
are a variety of more interesting attractors, although exact analysis becomes more
tedious.

The fundamental limitation of the DNNs described in Chapters 6 and 7 is
that they are autonomous, that is, the stable periodic firing patterns that are
represented by attractors are completely determined by the efficacy matrices of
synaptic connections and the initial states. However, the dynamics of any biological
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system depends on information that changes at every unit time and that is input
from the outside of the system, from neurons of other nervous systems and/or from
external stimulus. In autonomous models, if a minimal attractor consists of more
than one cycle, then there are some fluidity of shifting from one pattern to another
caused by noise, even with a change in firing rate in some cases. Therefore, my next
step was to formulate non-autonomous DNNs, expand the concepts of attractors,
and prove their existence.

New concepts are necessary with non-autonomous DNNs. One is bi-dependence,
and another is invariance with the timing of input. The bi-dependence means that
asymptotic properties of a DNN are dictated neither by the initial state nor the
input, but dependent on both of them. The invariance with the timing of input
means that assuming a periodic input sequence, asymptotic properties are indepen-
dent of any shift in arrival of the input sequence. In my definition, attractors in
non-autonomous DNNs must satisfy this condition. In the final Chapter 8, we will
see how autonomous DNNs described in Chapter 6 are modified by input, so that
a non-attractive limit cycle becomes attractive, a non-unique attractor becomes
unique, and an attractor consisting of more than one cycle becomes an attractive
cycle, but still the convergence to the attractor depends on the initial state.

It seems that when McCulloch and Pitts originally created a neural network
model, they did not intend to use it for practical decision making but for the
analysis of real neural activities. My motives for studying neural networks were
first mathematical and then biological. The incorporation of spontaneous firing in
my primitive DNN model, a feature distinct from prior models, served my these
two motives. However, in the immediate future, the present results may be used
in engineering rather than in biology, such as for a new computer architecture.
The main reason, I think, is not that the DNN is ”unrealistic”, but that currently
available experimental data are either too microcosmic or too macrocosmic for
biological applications of our results.

A summary of each chapter is described in the abstract at the beginning of
the chapter, so that readers who want to know main results may first refer to the
abstracts. In addition to basic concepts and notations in the field of discrete math-
ematics, most of which are defined in Chapter 1, I had to introduce various new
definitions and notations. Symbols and Notations attached in the final pages will
serve the readers for easy reference.

Takao Ueda

New York
—Written for the first edition, October 1999

I have updated Chapter 6 with newly found attractors, since I compiled the
first edition for the first time. The volume has grown too much to be contained in
one chapter. Also, writing each time the conversion from F to −F with the attrac-
tor wastes pages and makes less readable, so that, in this second edition, I have
housed attractors of minimal transformations without the conversion in a separate
Chapter 7.



PREFACE 7

—Added for the second edition, February 2001

I rewrote Chapter 7, 8, 9 on the common ground of extensive representations
of Boolean transformations. Consequently, as Boolean [ ]-representations are basic
tools for the first half part, the integer-valued extensive representations are now
basic tools for analysis of attraction in the second half part. I also added Chapter
10 to illustrate tangible applications.

—Added for the third edition, August 2002

I revised Chapters 3.4, 4.4, 4.5, 5.2, and 7.1-7.5 to incorporate a class of one-
to-one threshold transformations having single cycles and derived transformations
having attractors. Particularly I reorganized Chapter 7 with the new results.

—Added for the fourth edition, May 2005.
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