
CHAPTER 10 CASE STUDY: NEURAL INTEGRATORS

Abstract. This chapter provides some applications of the present study on
threshold transformations and dynamical systems of neural networks. In par-
ticlar, neural ingtegrators, which keep track of the position of eye movement,
are described in our framework.

10.1 Introduction

In dynamical systems of neural networks, as in any other dynamical systems,
there are two kinds of stability, one structural another orbital. In discrete-time and
finite-state models, the structural stability is ensured, if the generating function is
expressed by a self-dual Boolean form. In the previous chapters, almost all results
are expressed in Boolean functions, so that there is no problem about the structural
stability.

These chapters is primarilly concerned with the orbital stability. The orbital
stability is expressed in terms of attractors. First, the enhanced Arimoto theorem
(Theorem 5.5.2 of Chapter 5.5) asserts that there exists a first order system on
Qn having a unique cycle of any length k ≤ 2n. This is an existence theorem
for attractors. Starting at any initial state, the state will eventually be on the
unique cycle. However, I thought this dynamical system was too strong. Often it is
more desirable that the eventual states depend on initial states. Still, it is essential
that the eventual states are orbitally stable. Therefore, the remaining chapters
have been all devoted to existence of attractors that their basins for attraction are
proper subsets of the whole state-space. Particularly, Chapter 6 and 7 are con-
cerned with autonomous systems with spatial summation only, which are called
first-order. Chapter 8 is concerned with autonomous systems with spatial summa-
tion and temporal summation over two time points, which are called second-order.
Chapter 9 is concerned with non-autonomous first-order systems, which receive an
input sequence from their outside. These chapters clearly defined what attractors
are and proved the existence of such attractors having particular cycle structures.

Now, at more concrete level, ”Does there exist a mechanism that sets and resets
an initial state in real nervous systems? If it does, then how?” If a system is not
evolving, that is, if the efficacies of its synaptic connections are not plastic but
fixed, then only the input to the system from its outside can alter the initial state.
But how?

Concerning this question, I encountered models of saccadic eye movements. It
seems that a huge quantity of documents on such models have been published,
but Van Gisbergen, Robinson, and Gielen (1981) have been a basic source. Their
models like most others have, as their main components, neural integrators, which
keep eye position, and burst neurons, which send pulses to the neural integrators.

To my above question, it seems Seung et al (2000) seems most relevant. A com-
mon denominator of their research and mine is attractors in neural networks. They
characterize a neural integrator as a dynamical system having multiple attractors.
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Further, as the integrator receives pulses from burst neurons, new attractors of dif-
ferent firing rates are activated. The integrator is a special case of a general memory
model in which a piece of data is retrieved by input. Therfore, my above general
question had a clear answer. That is, input from burst neurons is responsible for
resetting initial states of a dynamical system.

However, the model of Seung et al (2000) is continuous as currently conventional
dynamical systems of neural networks that are based on physiological studies. The
continuous models may be better than discrete model in corporating physiological
data. However, the original models cannot deal with population dynamics. There-
fore, for example, the state space must be drastically simplified to the space of
firing rates or its equivalent. In general, what are stable or attractive in a neural
network are not the firing rates but a synchronic and diachronic specific firing pat-
terns. For example, the firing rates of the temporal firing patterns 10101010.. and
110011001100.. are both 1/2, but one may be an attractor and the other may be
not. For the firing patterns of a pair of neurons

10101010101010..... 10101010101010....
01010101010101..... 10101010101010....,

one may be an attractor and the other may be not. The simplified continuous
models cannot distinguish these patterns.

In contrast, our discrete dynamical systems based on the classical McCulloch
and Pitts model do distinguish these firing patterns. In the same discrete frame-
work, my project here is first to construct an autonomous NN(neural network)
having multiple attractors of tonic firing patterns with different firing rates. Then
the second part of the project is to construct a non-autonomous NN having two
input connections, one excitatory and another inhibitory by determining appropri-
ate efficacies for the connections. The third part is to determine a necessary burst
pattern that resets the initial state in a push-pull manner when the pulses of the
pattern are input to the excitatory and inhibitory connections. That means a stable
state changes from one tonic attractor to another tonic attractor. In summary, the
project is to construct a discrete model of neural integrators. Generation of such a
burst pattern will be also addressed in section 10.7.

10.2 Autonomous NN having multiple tonic attractors

Let Q = {0, 1} be the minimal Boolean algebra with the binary operation · and
∨ and the unary operation ¬. For any positive integer n, Qn is a Boolean algebra
and also a metric space defined by the Hamming distance. Let x(t) be the state
of a neuron at time t, where t = 1, 2, 3, ..., and x(t) ∈ Q. The sequence x is called
a tonic sequence of firing rate 0 ≤ i/m ≤ 1, where m is a positive integer and m
and i are relatively prime, if x is a periodic sequence of period m, the number of 1s
in x(1), ..., x(m) is i, and 1s are the most uniformly distributed. The last sentence
is not rigorous, but practically will be clear. For example, 1011010110..... is tonic
with firing rate 3/5.

101010010100101010010100101010010100...

is tonic, but

101010100100101010100100101010100100...
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is not tonic, although their firing rates are both 5/12. For a sequence x in Qn,
if every component sequence of x is a tonic sequence of firing rate i/m, then x is
called a tonic sequence of firing rate i/m.

A large number m is necessary, if virtually continuous firing rates are required.
However, if an eye position is determined by an (m+1)-adic number corresponding
to a set of firing rates of several integrators, then m in each integrator can be small.

For the first step for constructing a schematic neural integrator, it suffices to
construct an autonomous network such that for each firing rate of 0, 1/4, 1/2 and
3/4 there exists an attractor consisting of one or more tonic sequences of the firing
rate. These tonic sequences are

00000000000000000000...
10001000100010001000...
10101010101010101010...
11101110111011101110...
11111111111111111111...

Here, a sequence obtained by shifting another is also tonic. These tonic sequences
may be expressed by just their first 4 terms, namely, 0000, 1101, 1011, 0101 and the
like to be distinguished from each other. We call them also tonic.

A simple method will be to construct a 4th-order NN of dimension 3. In this
case, 3 neurons are involved. Starting from the initial states

x(1)x(2)x(3)x(4),
y(1)y(2)y(3)y(4),
z(1)z(2)z(3)z(4),

(10.2.1)

the subsequent states are successively determined by a threshold function H :
Q12 → Q3 and

(x(i), y(i), z(i)) = H(x(i− 4), y(i− 4), z(i− 4),
x(i− 3), y(i− 3), z(i− 3),
x(i− 2), y(i− 2), z(i− 2),
x(i− 1), y(i− 1), z(i− 1)).

This fourth-order NN is equivalent to a first-order NN of dimension 12. For this
conversion we rename the above matrix of variables x(1), y(1), z(1), ..., x(4), y(4), (z4)
to the 12-dimensional vector by the correspondence,

1, 4, 7, 10
2, 5, 8, 11
3, 6, 9, 12.

The converted first-order NN is generated by the transformation F of Q12 defined
by

F : (v1, ...., v12) 7→ (w1, ...., w12),
wi = vi+3 for i = 1, ..., 9,
(w10, w11, w12) = H(v1, v2, ..., v12).

(10.2.2)

In general, F is defined by its component function Fi = piF, i = 1, ..., 12, but in
the present case, only F10(= H10), F11(= H11), and F12(= H12) are yet to be
determined.
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Let ρ denote the cyclic permutation (1, 2, ..., 12). Starting at (10.2.1), H creates
a tonic sequence such that

x(i + 4) = x(i), y(i + 4) = y(i), and z(i + 4) = z(i)

for every i, if and only if
Fv = ρ−3v

for every v = ρ−3ju for every j, where

u = (u1, u2, ..., u12) = (x(1), y(1), ...., z(4)).

For example,

x = 1110111011101110....

y = 0111011101110111....

z = 1101110111011101....,

if and only if

101.111.110.011 7→ 111.110.011.101 7→ 110.011.101.111 7→ 011.101.111.110 7→ ....

by F , where . is inserted every 3 components of a point in Q12.
Let’s call v in Q12 tonic, if (v1, v4, v7, v10), (v2, v5, v8, v11), and (v3, v6, v9, v12)

are all tonic with the same firing rate. Let’s determine an F that satisfies a stronger
condition

Fv = ρ−3v′ (10.2.3)
for any v in the 1-neigborhood of any tonic v′ in Q12. In (10.2.3), a sufficient
condition for attractiveness of any tonic sequence is combined with the necessary
and sufficient condition that any tonic sequence is a limit orbit.

We assume F is self-dual. Then, Fi is in turn defined by fi = pi · ¬Fi, its [ ]-
representation. Then, to determine fi means to determine the set of points v such
that vi = 1 and (Fv)i = 0.

To determine f10, we assume v10 = 1 and obtain some necessary conditions
for F10v = 0, v being in the 1-neighborhood of a tonic point, and (10.2.3) being
satisfied.

First, suppose ((Fv)1, (Fv)4, (Fv)7, (Fv)10) = (1, 1, 1, 0). Then v must be in
the 1-neighborhood of a tonic point of firing rate 3/4. Therefore, if v1 = 0,
then (v2, v3, v5, v6, v8, v9, v11, v12) must contain at least one 0. If v1 = 1, then
(v2, v3, v5, v6, v8, v9, v11, v12) must contain at least two 0s.

Second, suppose ((Fv)1, (Fv)4, (Fv)7, (Fv)10) = (1, 0, 1, 0). Then v must be
in the 1-neighborhood of a tonic point of firing rate 1/2. Therefore, if v1 = 0,
then (v2, v3, v5, v6, v8, v9, v11, v12) must contain at least three 0s. If v1 = 1, then
(v2, v3, v5, v6, v8, v9, v11, v12) must contain at least four 0s.

Third, suppose ((Fv)1, (Fv)4, (Fv)7, (Fv)10) = (0, 0, 1, 0), which implies v is
in the1-neigborhood of a tonic point of firing rate 1/4. Therefore, if v1 = 0,
then (v2, v3, v5, v6, v8, v9, v11, v12) must contain at least five 0s. If v1 = 1, then
(v2, v3, v5, v6, v8, v9, v11, v12) contains at least six 0s.

The case where ((Fv)1, (Fv)4, (Fv)7, (Fv)10) = (0, 1, 1, 0) is out of our consider-
ation, since (0, 1, 1, 0) is not part of a tonic point of firing rate i/4 (It can be part
of a tonic sequence of firing rate 2/3).

Combining the above conditions, we obtain the following necessary conditions.
If (v1, v4, v7) = (0, 1, 1), then F10v = 0 implies that (v2, v3, v5, v6, v8, v9, v11, v12)
contains at least one 0s. If (v1, v4, v7) = (1, 1, 1), then F10v = 0 implies that
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(v2, v3, v5, v6, v8, v9, v11, v12) contains at least two 0s. If (v1, v4, v7) = (0, 1, 0), then
F10v = 0 implies that (v2, v3, v5, v6, v8, v9, v11, v12) contains at least three 0s. In
any other cases, F10v = 0 implies that (v2, v3, v5, v6, v8, v9, v11, v12) contains at
least four 0s.

A function F10 that satisfies the above conditions is, for example,

f10 = p10 · (¬p1 · p4 · p7 · S1 ∨ p4 · p7 · S2 ∨ ¬p1 · S3 ∨ S4), (10.2.4)

where Si is the disjunction of all conjunctions of i functions selected from

{¬p2,¬p3,¬p5,¬p6,¬p8,¬p9,¬p11,¬p12}.
We construct F as a symmetric transformation in the sense Fτ = τF for permu-

tations τ = (1, 2)(4, 5)(7, 8)(10, 11), (1, 3)(4, 6)(7, 9)(10, 12), and (2, 3)(5, 6)(8, 9)(11, 12).
Therefore, f11 and f12 are immediately obtained from f10.

Unfortunately, f10 is not a threshold function, so that the function H must
be realized by a composition of several neural circuits. However, from the above
construction, it will be easily proved that each of all 36 tonic cycles is an attractor.
Computer simulation also shows that there is no other cycle. Therefore, leaving
another construction for later time, I will use the autonomous NN generated by F
for the next stage in the to construct an integrator.

10.3 Non-autonomous NNs having burst input

We assume that pulses input from a burst neuron resets initial states, but what
happens when it finished its job and becomes silent? The synaptic connection for
the burst neuron always exists. This situation is totally different from the case
where no input exists. If the connection is excitatory, then a prolonged input of
the resting potential produces inhibitory effects and takes the new state back to
the original attractor and even further activates another attractor in the opposite
direction. Therefore, there must exist some other input that neutralizes the inverse
effects during the time when the burst neuron is silent. Fortunately, in a neural
integrator for saccadic eye movements, there exist two kinds of synaptic connections
in each integrator neuron for burst input, one inhibitory and the other excitatory.
When burst neurons connected two these synapses are both silent, the effects of
resting potentials of both neurons cancel each other out. This situation is the same
as the case where no input exists, that is, an autonomous network In short, eye
position is kept steady not only by attractiveness of a tonic firing and but also by
pairs of excitatory and inhibitory connections for burst neurons.

Now let the vector sequences input from burst neurons to the inhibitory synapses
of three neurons be b, and the vector sequence input from burst neurons to the
inhibitory synapses of three neurons be c. Both b and c are indexed as

1, 4, 7, 10, 13, 16, ...
2, 5, 8, 11, 14, 17, ...
3, 6, 9, 12, 15, 18, ....,

so that b1 is the state input to the first neuron at time 1, b8 is the state input to
the second neuron at time 3, etc.

To accept burst input from these sequences, we add Q24. The weights of the
synaptic efficacies of the input connections relative to the efficacies between the in-
tegrator neurons depend on the dimension and burst input and need some feedback
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from the next stage. In the present case, I make the relative weights equal to each
other.

Then, by modifying the transformation F defined by (10.2.2) and (10.2.4), we
obtain the function G : Q36 → Q12 defined by

G : (v1, ...., v36) 7→ (w1, ...., w12), wi = vi+3 for i = 1, ..., 9.

wi for i = 10, 11, 12 are determined by gi, where gi = pi · ¬(piG), defined by

g10 = p10 · (¬p1 · p4 · p7 · S5 ∨ p4 · p7 · S6 ∨ ¬p1 · S7 ∨ S8, (10.3.1)

where Si is the disjunction of all conjunctions of i functions selected from

{¬p2,¬p3,¬p5,¬p6,¬p8,¬p9,¬p11,¬p12, p13, p16, p19, p22,¬p25,¬p28,¬p31,¬p34}.
G is symmetric in the sense Gτ = τG for permutations

τ = (1, 2)(4, 5)(7, 8)(10, 11)(13, 14)(16, 17)(19, 20)(22, 23)(25, 26)(28, 29)(31, 32)(34, 35)
and

τ = (1, 3)(4, 6)(7, 9)(10, 12)(13, 15)(16, 18)(19, 21)(22, 24)(25, 27)(28, 30)(31, 33)(34, 36).

Therefore, g11 and g12 are immediately obtained from g10. G is also self-dual, so
that ¬pi · Fi = ¬̄gi.

The non-autonomous dynamical system ϕ : Q12 × Z+ → Q12 generated by G
and the input sequence b and c is defined by

ϕ(v, 0) = v,

ϕ(v, t) = G(ϕ(v, t− 1), b1+3(t−1), ..., b12+3(t−1), c1+3(t−1), ..., c12+3(t−1)).

10.4 Determination of burst patterns

Determination of burst patterns was unexpectedly hard. I tried a lot of failed
patterns before I hit the jackpot.

First I tried a single pulse being input to three neurons with the same timing.
In this case, (10.3.1) was different in that more weight should be put on the burst
input and the equation (10.3.1) should be more complex. For example, in one of
several variants of (10.3.1), in order that the tonic firing patterns were changed
by a pattern of inhibitory burst neurons, from 1111 to 1110, 1110 to 1010, 1010 to
1000, 1000 to 0000, the pattern 1110 was not only changed to 1010, but also further
changed to 1000. Then, I tried some examples where one neuron receives a burst
pulse after another neuron, so that, for example,

1111 011101
1111 7→ ... 7→ 101110
1111 110111.

Also, I changed the burst pattern from just one pulse 000100000.. to 0001010000..
and the like. Things improved. Still, the best example I obtained failed in one case
of timing between the burst pattern and one particular tonic sequence.

We must consider at least two factors. 1. A desired change in each tonic pattern
must occur at specific time points of the pattern. For example, for the change from
1110 to 1010, the change must occur at the second time point. If this time point
is missed, then another one period of 4 time points is required for the change. In
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the present model temporal summation is over 4 time points. Therefore, there is
only one chance, if the change is made by one pulse of burst input. On the other
hand, from the pattern 1111 to the pattern 1110, there are 4 chances in one period.
For one kind of change there is too few chances and for another kind of change too
many chances.

Attractiveness of these tonic patterns during the time when both inhibitory and
excitatory neurons are silent is made by cooperation by the three neurons. This
cooperative nature is alive during the transient period of change from one pattern
to another by burst input. Therefore, a change in one neuron influences another
neuron. In particular, if two neurons are changed from one pattern to another
pattern, the third neuron will be changed without any pulse of the burst neuron
input thereto.

My first trials where a single pulse is simultaneously input to the three neurons
have no problem for the above factor 2, but were severely affected by the above
factor 1. My attempts to diversify the phases of patterns and increasing the num-
ber of burst pulses relieved the factor 1 but brought some effects of the factor 2.
Therefore, a neuron receives burst pulses later than another should receive fewer
burst pulses.

After several trials in this way, I finally got an example where one burst pattern
can change each tonic pattern to another tonic pattern one step lower, when starting
from

111111111...
111111111...
111111111...

The burst pattern is:
101010000000...
000010100000...
000000000000...

Here, the first line is the burst input to neuron 1, the second is the burst input to
neuron 2, and the third is the burst input to neuron 3. The dynamical system is
self-dual, so that starting from

000000000
000000000
000000000,

with excitatory burst input of the same pulse pattern, the firing of the three neuron
reaches

111111111...111111111...111111111...

through 4 changes, each change occurring whenever the pulse pattern is input.
I have not checked all cases where excitatory burst input is followed by inhibitory

burst input and vice versa. But it seems the push-pull property is also satisfied.

10.5 Circular threshold constructions

Now we address the pending problem that the function H in the transformation
F in Section 10.2 is not a threshold function. It seems impossible to modify the
function fi to a threshold function such that the modified F has tonic attractors
of firing rates i/4, i = 0, 1, 2, 3, 4. Therefore, we try to construct a totally new
network.
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First, let us consider only the following types of tonic sequences of four neurons.

00000... 100010... 01010... 011101... 11111...
00000... 010001... 10101... 101110... 11111...
00000... 001000... 01010... 110111... 11111...
00000... 000100... 10101... 111010... 11111...

Then, we can distinguish these tonic sequences of firing rates i/4 from each other
in any of their synchronic cross sections.

For example, the first and third cross sections are respectively

0 1 0 0 1
0 0 1 1 1
0 0 0 1 1
0 0 1 1 1

and
0 0 0 1 1
0 0 1 1 1
0 1 0 0 1
0 0 1 1 1

That is, these tonic sequences can be distinguished by their cross sections, which
are elements in Q4. We call the firing rate in each cross section a synchronic firing
rate in contrast to a diachronic firing rate, which is the normal definition of firing
rate. In the present case, each synchronic firing rate of a tonic sequence is equal to
its diachronic firing rate. However the minimum distance between the cross sections
of two different sequences is 1. Therefore, in order to separate the cross sections
at least by distance 3 and make each tonic sequence an attractor in a dynamical
system, we consider the state space of Q12. The tonic sequences now become

00000... 100010... 01010... 011101... 11111...
00000... 010001... 10101... 101110... 11111...
00000... 001000... 01010... 110111... 11111...
00000... 000100... 10101... 111011... 11111...
00000... 100010... 01010... 011101... 11111...
00000... 010001... 10101... 101110... 11111...
00000... 001000... 01010... 110111... 11111...
00000... 000100... 10101... 111011... 11111...
00000... 100010... 01010... 011101... 11111...
00000... 010001... 10101... 101110... 11111...
00000... 001000... 01010... 110111... 11111...
00000... 000100... 10101... 111011... 11111...

The first and the last sequences are constant-term sequences in Q12. The second
and fourth are cyclic sequences of period 4, and the third is the cyclic sequence of
period 2. Also the component sequence is the right shift of the immediately above
component sequence.

We now try to construct a first-order NN of dimension 12, in which the above
5 tonic cyclic sequences are attractors. After several attempts, I obtained the
following self-dual circular threshold transformation F of Q12 defined by F = 〈f1〉,

f1 = p1 · S2{¬p4,¬p8,¬p12}. (10.5.1)
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This threshold translation is described in Examle 7.2.5 of Chapter 7 for general
dimension. In fact, according to Chapter 7.2, this NN has only 6 cycles and all of
them are strong attractors. Five of them correpond to those illustrated above, and
the other correspond to the non-tonic cyclic sequence of period 4,

11001100...
01100110...
00110011...
10011001...
11001100...
01100110...
00110011...
10011001...
11001100...
01100110...
00110011...
10011001...

The next problem is how to resolve this unwelcome non-tonic attractor. However, it
seems again impossible to modify the circular threshold transformation to another
having only the five tonic attractors. For non-threshold constructions, see Section
10.8. we use this autonomous NN to construct a neural integrator. An advantage is
that we can easily generalize the dimension of this transformation. However, there
will be more and more non-tonic attractors as the dimension becomes higher.

A non-autonomous network having burst input for an integrator can now be
defined by the mapping G: Q36 → Q12, G = 〈g1〉,

g1 = p1 · (S2{¬p4,¬p8,¬p12} · S1{p13,¬p25} ∨ S2{p13,¬p25}), (10.5.2)

where the indices 13 to 24 respectively represent the inhibitory burst input to neuron
1 to 12, and the indices 25 to 36 respectively represent the excitatory burst input
to neuron 1 to 12. See Chapter 9.3 for the notation 〈g1〉 (Modify the definition for
one input 13 to 24 into two inputs 13 to 24 and 25 to 36).

10.6 Functions of burst generators

The functions of a generator of burst sequences to be input to a neural integrator
defined by (10.5.2) should be very sophisticated and complex. First, the generator
supplies pulses so that non-tonic attractors should be avoided. Moreover, the gen-
erator supplies pulses with exact timing. For example, in order to reduce a firing
rate from 3/4 to 1/2, at a time when the state (cross section) is

111011101110, (10.6.1)

and the excitatory burst generator is silent, the inhibitory burst generator sup-
plies a pulse to at least two of neurons 3, 7, 11. If pulses are input to neurons 3, 7,
and 11, then the next state is

0101001010111.

By the attractiveness, the next state will be a tonic cross section of firing rate 1/2,
if no more pulses are supplied. Therefore, a tonic sequence of firing rate 1/2 is
obtained. However, if the inhibitory burst generator supplies pulses to neurons 1
and 5 at the state (10.6.1), then there is no change in the firing rate in the next
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cross section, just a circular shift. If the inhibitory burst pulses are supplied to
neurons 2 and 6, then the next cross section is

001100110111.

By the attractiveness, the next state will be a non-tonic cross section of firing rate
1/2. Therefore, a non-tonic sequence will succeed, when both burst generators are
silent. According to Van Gisbergen, Robinson, and Gielen (1981), the heart of the
local feedback hypothesis is that the output E′ of the integrator is relayed back
to burst generators. The burst generators also receive a command signal Ed from
higher centers. ”Burst cell is driven by a signal proportional to motor error, which
is the difference between where the eye is (E′) and where it should be (Ed)” (p.
419).

For our integrator network defined by (10.5.2), the matter is not only of firing
rate but also of precise timing. Therefore, designing a neural circuit of the burst
generators and the local feedback system is another combinatorial problem to be
studied in the next stage.

10.7 Generator-integrator feedback system

Now, we try to construct a burst generator and a local feedback system for
the burst generator and integrator. Van Gisbergen, Robinson, and Gielen (1981)
contains a proposed model, which is not a neural circuit in a strict sense but rather
a conceptual block diagram for the feedback system. The proposed model simulates
experimental data in terms of firing rate. But what is a neural circuit that receives
two signals and outputs a signal having the firing rate of the difference between the
firing rates of two input signals. To construct such a circuit will require resolving
the same kind of difficulties as the generator-integrator feedback system does, such
as timing between two signals and limitations of threshold functions. To describe
the generator-integrator feedback system in terms of the ”difference” of two signals
is as tautological as to say that an integrator gives a signal whose firing rate is
the sum of the firing rates of two signals. In our following model, it is the burst
generator itself that produces a kind of difference as burst signals.

Here our purpose is not to simulate a real nervous system for saccadic eye move-
ments. Instead, we are concerned with an idealized abstract system in contrast to
statistical analysis and parameter physics that simulate experimental data, where
firing rate represents a crude abstraction of reality. Therefore, we try to construct
neural circuits of a feedback system, as a basis for a concrete system, in terms of
pulse signals and Boolean functions in place of firing rates. Still, this approach
deals with intrinsic properties of neural circuits, such as timing and threshold func-
tions. We do not take into account the time required for transmission of signals
between the burst generator and the integrator, but slight modification will easily
incorporate the delays.

When we describe a system in terms of 0-1 pulse signals and not in terms of
firing rate, we can define the difference of two signals, that is, two sequences x and
y in Qn by a pair of h and c defined by,

h(t + 1) = x(t) · ¬y(t),
c(t + 1) = y(t) · ¬x(t). (10.7.1)
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For example, consider the following three sequences in Q4. Note that the firing rate
of the first is 3/4. The second and the third sequences differ only in their phases,
and their firing rate is 1/4.

101110111011 100010001000 010001000100
110111011101 010001000100 001000100010
111011101110 001000100010 000100010001
011101110111 000100010001 100010001000

For the first two sequences, h and c are respectively

001100110011 000000000000
100110011001 000000000000
110011001100 000000000000
011001100110 000000000000

Therefore, h is a sequence having a firing rate 1/2 that is the difference of the firing
rates of the first and the second. However, for the first and the third sequences, h
and c are respectively

101110111011 010001000100
110111011101 001000100010
111011101110 000100010001
011101110111 100010001000

Here, the firing rate of h is 3/4 and the firing rate of c is 1/4. Therefore, we have
not obtained a sequence of firing rate 1/2. Therefore, we have faced another timing
problem to produce a signal having the difference firing rate of two signals. In order
to avoid a complex timing problem, it is better not to seek such a signal but to use
the pair (h, c) for the difference of two signals.

Now assume that the above sequence x is an integrator signal and y is a command
signal. Further assume that h is the inhibitory burst signal, and c is the excitatory
burst signal. Then we can construct the following feedback system.

GN I

X_t H_t, C_t
Y_t

Figure 1.

where, besides (10.7.1),

xt+1 = G(x(t), h(t), c(t)), G = 〈g1〉,
g1 = p1 · (¬p4 · (p5 ∨ p9) ∨ p5 · ¬p9).

(10.7.2)
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(10.7.2) is a simplified function of (10.5.2) obtained by removing attractiveness. If
we consider the state space Q12 in place of Q4, we can use (10.5.2) as it is. Two
problems should be addressed now. First, for an integrator to change the firing rate
3 /4 of x to 1/4, it must receives h(t) and c(t) that may, depending on the timing
between x and the command signal as described above, be simultaneously active at
some time t from the burst generator. This does not pose any serious mathematical
problems. It also agrees with reality, since Van Gisbergen, Robinson, and Gielen
(1981, p.418) says, ”... during any saccade, ... burst neurons on both sides of the
brain stem often are active simultaneously.”

The second problem was already discussed in the last section. The function G
is very sensitive to the timing between the inputs x and (h, c). In fact, the above
feedback system defined by (10.7.1) and (10.7.2) does not work. There are two
time lags between the measuring of the difference and the realization of changing
the synchronic firing rate of x. At the same time period, if all components of h and
c are all 0, then the cross section of x will round-shifted by 2. Therefore, (10.7.1)
should be modified to

h(t + 1) = ρ2(x(t) · ¬y(t)),
c(t + 1) = ρ2(y(t) · ¬x(t)), (10.7.3)

where ρ is the cyclic permutation (1,2,3,4). Clearly h and c are threshold functions.
Computer simulation expects that this feedback system will work. For example,
for the first and third sequences in the beginning of this section respectively as x(t)
and y(t), we obtain

x(t) :

10000100
11100010
11010001
01001000

y(t) :

01000100
00100010
00010001
10001000

h(t) :

01100000
00100000
01000000
01100000

c(t) :

00000000
01000000
00100000
00000000

Next, we prove a theorem that validates the generator-integrator feedback system
constructed in above. The state spaces are now Qm, and ρ is the cyclic permutation
(1, 2, ..., m). Let y be a tonic sequence in Qm. If y(t + 1) = ρy(t) for every t, we
call x a circular tonic sequence.

G is a circular function: Q3m → Qm, that is, ρG(u, v, w) = G(ρu, ρv, ρw) for
u, v, w ∈ Qm, defined by g1 = p1 · ¬(p1G), that is, G = 〈g1〉,

g1 = p1 · (¬pm · (pm+1 ∨ ¬p2m+1) ∨ pm+1 · ¬p2m+1). (10.7.4)
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The command signal y(t) is a given circular tonic sequence in Qm, and the inte-
grator signal x(t) is a sequence in Qm defined by

xt+1 = G(x(t), h(t), c(t)). (10.7.5)

The burst signals h(t) and c(t) are sequences in Qm defined by

h(t + 1) = ρ2(x(t) · ¬y(t)),
c(t + 1) = ρ2(y(t) · ¬x(t)) (10.7.6)

In the following, M = {1, ..., m} is regarded as the residue class ring with m as the
zero element. For example, 1− 2 = m− 1. Further, o = (00, .., 0) ∈ Qm.

Theorem 10.7.1 Let h(0) = c(0) = o. Then, x(2) = y(2), and x(3) = y(3).

Proof. Let h(1)k = 1 and c(1)k = 0. Clearly x(2)k = 0. On the other hand, we
have x(0)k−2 = 1 and y(0)k−2 = 0, since h(1)k = 1. Therefore, y(2)k = y(0)k−2 =
0. Therefore, x(2)k = y(2)k. By self-duality, if h(1)k = 0 and c(1)k = 1, then
x(2)k = y(2)k.

Next, let h(1)k = c(1)k = 0. If x(1)k = 1 and x(1)k−1 = 0 then x(2)k = 0. If
x(1)k = 1 and x(1)k−1 = 1, then x(2)k = 1. Therefore, by self-duality, x(2)k =
x(1)k−1. On the other hand, x(0)k−2 = yk−2, since h(1)k = c(1)k = 0. Therefore,
x(1)k−1 = x(0)k−2, since h(0) = c(0) = o. Therefore, x(2)k = x(0)k−2. Clearly
y(2)k = y(0)k−2. Therefore, x(2)k = y(2)k. Therefore, x(2) = y(2).

Further, x(1) = ρx(0) and y(1) = ρy(0). Therefore,

h(2) = ρ2(x(1) · ¬y(1)) = ρ3(x(0) · ¬y(0)) = ρh(1).
c(2) = ρ2(y(1) · ¬x(1)) = ρ3(y(0) · ¬x(0)) = ρc(1).

Let h(2)k = 1. Then h(1)k−1 = 1, so that x(2)k−1 = 0. Therefore, if x(2)k = 1,
then x(3)k = 0 = x(2)k−1. If x(2)k = 0, then x(3)k = 0 = x(2)k−1. If c(2)k = 1,
then x(3)k = 1 = x(2)k−1 by self-duality. Next, let h(2)k = c(2)k = 0. Then clearly
x(3)k = x(2)k−1. Therefore, x(3) = ρx(2) = ρy(2) = y(3). ¤

The above Theorem 10.7.1 shows that if h(0) = c(0) = o, then, x(2) = y(2)
and x(3) = y(3), so that h(3) = c(3) = o, so that x(4) = y(4), ... Therefore, if
h(0) = c(0) = o, then x(t) = y(t) for every t ≥ 2, and h(t) = c(t) = o for every
t ≥ 3. Therefore, if y changes to another circular tonic sequence at some time
t′ ≥ 3, then x(t) = y(t) for every t ≥ t′+ 2, since h(t′) = c(t′) = o. It is well known
that omni-pause neurons make burst generators silent. The input from the omni
pause neurons to the burst generator is one feature that is absent from the present
generator-integrator feedback model.


