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Abstract

This thesis discusses the problems of the conventional ISO 9646 methodology

for OSI conformance testing, and proposes a new methodology based on

trace analysis. In the proposed methodology, a trace analyzer is used to

determine whether the observed behavior of the implementation under test

is valid or invalid. This simplifies test cases dramatically, since they now

need only specify the expected behavior of the IUT; unexpected behavior is

checked by the trace analyzer. Test suites become correspondingly smaller.

Because of this reduction in size and complexity, errors in test suites can

be found and corrected far more easily. As a result, the reliability and the

usefulness of the conformance testing process are greatly enhanced.

In order to apply the proposed methodology, trace analyzers are needed.

Existing trace analyzers are examined, and found to be unsuitable for OSI

conformance testing. A family of new trace analysis algorithms is presented

and proved.

To verify the feasibility of the proposed methodology, and to demon-

strate its benefits, it is applied to a particular protocol, the LAPB protocol

specified by ISO 7776. The design and implementation of a trace analyzer
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for LAPB are described. The conventional ISO 8882-2 test suite for LAPB,

when rewritten to specify only the expected behavior of the IUT, is found

to be more than an order of magnitude smaller.
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Chapter 1

Introduction

This thesis discusses the problems of the conventional ISO 9646 methodology

for OSI conformance testing, and proposes a new methodology based on

trace analysis. In the proposed methodology, a trace analyzer is used to

determine whether the observed behavior of the implementation under test

is valid or invalid. This simplifies test cases dramatically, since they now

need only specify the expected behavior of the IUT; unexpected behavior is

checked by the trace analyzer. Test suites become correspondingly smaller.

Because of this reduction in size and complexity, errors in test suites can

be found and corrected far more easily. As a result, the reliability and the

usefulness of the conformance testing process are greatly enhanced.

This chapter provides the motivation for the new methodology. It de-

scribes the problems of the conventional methodology, and shows how using

a trace analyzer overcomes those problems. Later chapters discuss specific
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trace analysis methods, and demonstrate the feasibility of the new method-

ology by applying it to the LAPB protocol.

1.1 The conventional methodology

We begin by discussing why OSI conformance testing is needed. We then

describe the conventional ISO 9646 conformance testing methodology and

discuss the problems with it.

1.1.1 Conformance testing

ISO is currently standardizing computer communication protocols within

the framework of the OSI reference model. The idea is that any two sys-

tems which implement the same OSI protocols will be able to communicate

with one another. For the reader who is unfamiliar with communication

protocols and the OSI protocol standards, Tanenbaum [18] provides a good

introduction.

Unfortunately, the standards documents which define the protocols are

often unclear or ambiguous. They may be interpreted by different people in

different ways. As a result, different implementations of the same protocol

sometimes turn out to be incompatible with one another.

To deal with this problem, ISO is also standardizing certain conformance

testing procedures, which are carried out on a given protocol implementa-

tion to ensure that it conforms to the appropriate protocol standard. The
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idea is that these tests will be performed by some recognized test laboratory.

After a protocol implementation passes the tests, the laboratory gives it a

certification of approval. Customers may then buy the protocol implementa-

tion from its vendor with at least some confidence that it will be compatible

with other implementations.

The client for whom the laboratory performs the conformance tests may

be either the implementation vendor, wanting to use the certification of con-

formance as a selling point; or a potential customer, wanting some assurance

from a third party that the implementation works. In either case, the test

laboratory has little or no knowledge of the internal workings of the system

under test (SUT) which contains the implementation (IUT). The confor-

mance testing process treats the SUT as a black box: only its external

behavior is observed.

1.1.2 The ISO 9646 methodology

The conventional conformance testing methodology is described by the five-

part standard ISO 9646. In this methodology, the IUT is not simply run

against another implementation, as this would not test the reaction of the

IUT to invalid messages. Instead, a tester able to send both valid and invalid

messages is used to execute a series of test cases, each testing a particular

aspect of the protocol. For example, there is usually one test case for each

possible state transition.

There are four different test architectures discussed in ISO 9646, called

3



lower-level protocols

test cases

tester

SUT

higher layers

IUT

lower-level protocols

Figure 1.1: The basic conformance testing architecture

“methods”: local, coordinated, distributed, and remote. The local test

method is not intended for conformance testing, since it requires access

to the lower service boundary of the IUT, which is internal to the SUT;

such access is not available during third-party testing. In the other three

test methods, the tester exchanges messages with the IUT over a normal

communications service, provided by lower-level protocol implementations

in both the tester and the SUT (Figure 1.1).

In the remote test method, the tester interacts with the SUT only via

the messages which it sends and receives. In the coordinated and distributed

test methods, the tester also has a point of control and observation at the

upper service boundary of the IUT. The remote test method is generally

considered the most practical architecture, since it is the only one which

does not require access to any internal interfaces within the SUT.

ISO is planning to standardize an abstract test suite, consisting of ab-
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stract test cases, for each of the OSI protocols. The abstract test suite for

each protocol specifies all the tests which an implementation must pass in or-

der to receive its certification of conformance. TTCN, the Tree and Tabular

Combined Notation, is used to specify abstract test suites. In this notation,

each test case is specified as a tree of events (such as: tester sends mes-

sage to IUT, tester receives message from IUT, timer expires). Each path

from the root of the tree to one of its leaves is a possible sequence of these

events. Each leaf has a verdict associated with it: PASS, if the sequence

of events corresponds to the expected IUT behavior; FAIL, if the sequence

of events corresponds to invalid IUT behavior; or INCONCLUSIVE, if the

IUT’s behavior was valid, but not what was expected. TTCN has many

of the features of a programming language—variables, expressions, loops,

subroutines, and so on—but being a special-purpose notation, is somewhat

limited when compared to a general-purpose language like C or Pascal.

The abstract test cases are implemented as executable test cases on par-

ticular testers. TTCN is precise enough and explicit enough to permit direct

translation from abstract test cases to executable test cases: in fact, at least

two systems which are able to perform such translation automatically have

been built [20, 16]. Thus TTCN can be viewed as a high-level programming

language: once a TTCN test suite has been written, it can be translated

directly into executable code without human intervention.
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1.1.3 Problems with the test suites

At present, two TTCN test suites have been specified by ISO, one for the

X.25 LAPB protocol and one for the X.25 packet layer protocol. These test

suites are specified by Parts 2 and 3, respectively, of the document ISO 8882

[7]. They are being standardized separately.

Unfortunately, both test suites have a number of major problems. They

contain many, many errors, despite repeated revisions by protocol experts

over a period of years. (Errors in the current version of ISO 8882-2 are

described in Chapter 4.) The presence of such errors means that we can only

have a limited amount of confidence in the results of conformance testing.

Moreover, the test suite standards themselves are incredibly large, much

larger than the original protocol standards from which they are derived. For

example, the ISO protocol standard for LAPB, ISO 7776, is only 23 pages

long; the current version of ISO 8882-2 is 252 pages long, an entire order

of magnitude larger. Documents of this size are very difficult to read and

understand; again, this lowers our confidence in the results of conformance

testing.

In short, the existing abstract test suites are untrustworthy. This calls

into question the usefulness of conformance testing. If an IUT fails certain

conformance tests, is it because of errors in the IUT, or because of errors in

the test cases? In order to establish the usefulness of conformance testing,

some way of producing reliable, trustworthy test suites must be found.
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1.1.4 Problems with the methodology

Why do existing test suites have the problems which we have described? The

reason appears to lie in the conformance testing methodology, rather than

the particular protocols being tested. Each TTCN test case must specify

all possible valid sequences of events, both expected and unexpected. It is

surprisingly difficult to identify all unexpected but valid sequences of events,

for a number of reasons. The most important reason is that the order in

which events are observed by the tester may not be the same as the order in

which they are observed by the IUT.

It may not be immediately obvious why this is so. To see why, consider

the common situation in which a test case sends a message q to the IUT, in

order to verify that the IUT sends a response r. The expected sequence of

events in this case is (q, r).

The message q takes some amount of time to travel from the tester to

the IUT. Suppose that during this time, the IUT sends a message of its own,

call it p. Then the tester sees the sequence of messages (q, p)—it receives

the message p after it sends q—whereas the IUT sees the sequence (p, q)

(Figure 1.2).

According to the protocol, the IUT is required to send r immediately

upon receiving q; it is invalid for the IUT to send p after receiving q. Nev-

ertheless, the test case must specify both (q, r) and (q, p) as being valid

sequences of events—the former being the expected behavior, and the latter

being unexpected but valid behavior—because the sequence (q, p) observed

7



q

p

tester

p

q

IUT

Figure 1.2: Different sequences of events at the tester and at the IUT

by the tester may have been caused by the sequence (p, q) at the IUT, which

is valid.

It should be clear from this example that identifying all possible valid-

but-unexpected sequences of events is not easy. As a result, individual

test cases are rather more complex than might be expected. There is also

considerable redundancy among the test cases, since TTCN has somewhat

limited facilities for identifying functions common to different test cases. A

test suite consisting of hundreds of these test cases will therefore be very

large. As described earlier, TTCN is basically a programming language, so

a TTCN test suite is essentially a very large and complex program. Writing

and “debugging” a TTCN test suite is not an easy task, especially since

there are few support tools for TTCN. Frequent errors are inevitable.
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IUT

trace analyzer

tester

Figure 1.3: Using a trace analyzer for conformance testing

1.2 A methodology based on trace analysis

This thesis proposes an alternative methodology for conformance testing.

The basic idea is that instead of having each test case identify all unexpected

but valid sequences of events, a trace analyzer is used to determine whether

or not the observed behavior of the IUT is valid. The individual test cases

need only specify the expected sequence of events; any unexpected events will

be checked for validity by the trace analyzer. The trace analyzer passively

observes the exchange of messages between the tester and the IUT (the

trace), notifying the test operator whenever it discovers an error in the

IUT’s behavior (Figure 1.3). No new specification need be given for the trace

analyzer: it can be implemented directly from the protocol specification.

In the new methodology, test case verdicts may be assigned in a straight-

forward manner. If the IUT’s behavior is found to be invalid by the trace

analyzer, the verdict is FAIL. If the IUT’s behavior is valid, and matches

what was expected by the test case, the verdict is PASS. If the IUT’s be-
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havior is valid, but unexpected, the verdict is INCONCLUSIVE.

The new methodology dramatically simplifies test cases, since they only

specify the expected sequence of events. The size of the test suite is corre-

spondingly reduced; for example, the ISO 8882-2 test suite is reduced from

252 pages to 8 pages. (The re-specified test suite is described in Chapter

4.) This reduction in size and complexity makes it far easier to detect and

correct errors in test cases.

An additional advantage is that the problem of determining the validity

of the behavior of the IUT is handled in one place—the trace analyzer—

instead of being distributed over hundreds of test cases. This eliminates a

considerable amount of redundancy, and makes the handling of this problem

easy to change.

In short, the proposed methodology should make test suites trustworthy,

and greatly enhance the reliability and usefulness of the conformance testing

process.

1.3 Other possible solutions

One might ask whether it is necessary to introduce trace analysis in order

to make conformance testing useful. For example, why not simply continue

debugging the abstract test suites until no errors remain? Wouldn’t this be

easier than adopting a new methodology?

It may be possible to do this, but it doesn’t appear very likely. As
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discussed earlier, the abstract test suites are essentially large and complex

programs, written in a somewhat unstable language (TTCN) with which

we have little experience and for which there are few support tools. It is

unreasonable to expect that the test suites can be debugged in the near

future. Indeed, the ISO 8882-2 and ISO 8882-3 test suites have been revised

periodically for a number of years, but still contain many errors.

A second criticism that might be made is that errors in the abstract test

suites are not important. Won’t errors be discovered as the test cases are

implemented? And even if they are not, can’t the test laboratory personnel

check the test case verdicts by hand?

It is true that if the abstract test cases are being implemented manually,

some of the errors in them will be detected and corrected. However, if all

of ISO’s protocol experts are unable to detect the errors in an abstract test

suite, it seems improbable that a test suite implementor will.

With regard to test laboratory personnel checking the test verdicts—

it is possible to do this, provided that the people involved are experts in

the protocol being tested, and are willing to go through the tedious task

of wading through the several hundred pages of output generated by the

test cases. However, this approach is undesirable for two reasons. First,

it changes the conformance testing process from a more or less automated

one—the test cases can be executed against the IUT with little or no human

intervention—to one requiring considerable human expertise. Second, the

test laboratory personnel would basically be serving as human substitutes

11



for a trace analyzer. Considering the repetitive and mechanical nature of

trace analysis (various algorithms are discussed in Chapter 2), this seems

like a waste of human effort.

A third critic might ask whether the problem might not be solved simply

by abandoning TTCN and the idea of automatic implementation of abstract

test cases. Suppose we re-specify the test cases to identify only the expected

sequence of events, so that the abstract test suites become simpler and

smaller, as described earlier. Then what do we need a trace analyzer for?

The answer is that this approach merely shifts the problem of specifying

unexpected but valid sequences of events from the abstract test cases to the

executable test cases. It is now the test suite implementor who is responsi-

ble for identifying all unexpected but valid sequences of events. The same

comments about the difficulty of identifying unexpected but valid sequences

of events, the complexity of the resulting test cases, the size of the result-

ing test suite, and the difficulty of debugging it apply just as well to the

executable test cases as to the abstract test cases.

Finally, in recent years some work has been done on automatic generation

of test suites from formal protocol specifications. Wouldn’t this solve the

problem? Wouldn’t test suites generated by machine would be free of errors?

Perhaps at some time in the future, this may be a viable strategy. At

present, though, there are some major obstacles. Present methods for test

case generation, surveyed by Sidhu and Leung [17], only generate the ex-

pected sequence of events; the problem of unexpected but valid events is

12



not addressed at all. Moreover, protocol standards are currently written

in English; no formal specifications have been standardized yet. Even if

they were, there is presently a large gap between the formal specification

techniques used to specify protocols, such as Estelle and LOTOS, and the

state machine specifications used to generate test suites. This problem is

discussed by Miller [12].

1.4 Overview of the thesis

In this chapter, we have discussed why trace analysis should be used to do

conformance testing. In Chapter 2, we discuss how it should be done: the

requirements for a trace analyzer used in conformance testing are discussed,

existing trace analyzers and trace analysis methods are examined and found

wanting, and a family of new trace analysis algorithms is presented and

proved.

Chapters 3 and 4 demonstrate the feasibility of the proposed methodol-

ogy, by applying it to the LAPB protocol. Chapter 3 discusses the design

and implementation of a trace analyzer for the LAPB protocol; Chapter 4

discusses the effects of re-specifying the ISO 8882-2 test suite according to

the new methodology.

Finally, Chapter 5 presents the conclusions of the thesis.

13



1.5 Related work

The idea of automated trace analysis is not new. Trace analyzers for var-

ious protocols are described by Cork [3]; Molva, Diaz, and Ayache [13];

Matthews, Muralidhar, and Sparks [11]; Probert [15]; and Lo [10]. More

general approaches to trace analysis are discussed by Ural and Probert [19];

Bochmann, Dssouli, and Zhao [2]; and Bochmann and Bellal [1]. However,

all of these trace analyzers and trace analysis methods are unsuitable for

conformance testing (as opposed to, say, diagnostic testing); the reasons are

discussed in Chapter 2.

With respect to methodology, Bochmann, Dssouli, and Zhao [2] also

discuss the idea of separating trace analysis from individual test cases. They

suggest that a trace analyzer would be useful for validating TTCN test cases,

or in situations in which standard test cases cannot be applied, but stop

short of suggesting, as we have, that a conformance testing methodology

based on trace analysis could be used to replace the ISO 9646 methodology

altogether.

The conventional conformance testing methodology is described by the

five-part standard ISO 9646 [8]. The three-part standard ISO 8882 [7] spec-

ifies the standard TTCN test suites for the X.25 LAPB and packet layer

protocols; the development of the LAPB test suite is described by Kanungo,

Lamont, Probert, and Ural [9].

14



Chapter 2

Trace analysis methods

We now turn to the question of how trace analysis should be done. This

chapter discusses the requirements for a trace analyzer used in conformance

testing, and examines existing trace analysis methods in light of these re-

quirements. Finally, three new trace analysis algorithms are presented and

proved.

2.1 Requirements

To apply the conformance testing methodology proposed in Chapter 1, a

trace analyzer is needed. However, not just any trace analyzer is suitable; to

be useful in conformance testing, it should satisfy the following requirements.

First, the trace analyzer should require minimal human intervention. A

typical test suite contains hundreds of test cases, takes hours to run, and

generates hundreds of pages of traces. Clearly, the trace analysis process

15



should be as automated as possible. Requiring that a protocol expert double-

check each test case verdict is not acceptable.

Second, the trace analyzer should assign a FAIL verdict only if it is cer-

tain that an error has occurred. This is a consequence of the first require-

ment: If the trace analyzer were to flag any event that looked as though it

could be caused by an IUT error, human intervention would be required to

decide whether an error had in fact occurred.

Third, the trace analyzer should treat the SUT as a black box. It is un-

reasonable to expect the implementation vendor to expose interfaces within

the SUT in order to do conformance testing.

Fourth, the trace analyzer should not assume that the order in which

events are observed is the same as the order in which they occur at the

IUT; because of propagation delay between the observer and the IUT, the

order may be different, as discussed in Chapter 1. Also, if the underlying

communications service is unreliable, the trace analyzer should take this into

account.

The discussion above refers to a trace analyzer for a specific protocol,

but more generally, any trace analysis algorithm should also satisfy these re-

quirements. In addition, to be most useful, a trace analysis algorithm should

make minimal assumptions about the protocol being tested. For example,

a trace analysis algorithm would be of limited usefulness if it assumed that

the protocol being tested is deterministic, since most protocols are not.

A final consideration is whether the trace analyzer or trace analysis algo-

16



rithm is able to operate on-line, as the test cases are being executed, or must

analyze the recorded traces off-line. The former would be more useful, since

it can detect errors as they occur. Note that any trace analysis algorithm

which can run on-line can also run off-line, but not vice versa.

2.2 Existing trace analysis methods

When existing trace analyzers are examined, it is found that there are only

two basic methods used: heuristics and simulation. Trace analyzers which

use heuristics [11, 15] check the given trace against some predefined set of

rules; anything which looks like an error is marked. Thus a heuristic trace

analyzer relies on a human protocol expert to check its results. As dis-

cussed above, a trace analyzer which requires extensive human intervention

is not suitable for conformance testing (although it may be useful for other

applications).

Other trace analyzers [3, 13, 1, 10] simulate a perfect implementation,

and compare its behavior to the behavior of the IUT. All messages received

by the IUT are sent to the simulated implementation, and the messages sent

by the IUT are compared to the messages sent by the simulation. Most of

the trace analyzers assume that the protocol is deterministic. [19, 1] describe

trace analysis algorithms which do not make this assumption, but these al-

gorithms use backtracking to handle non-determinism, which prevents them

from being used on-line.
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All existing trace analyzers and trace analysis methods which use sim-

ulation have this in common: they assume that events are observed in the

same order as they occur at the IUT. As discussed in Chapter 1, this is not

a valid assumption.

In summary, existing trace analysis methods are unsuitable for OSI con-

formance testing. New methods are needed.

2.3 A family of new trace analysis algorithms

We now present and prove three new trace analysis algorithms. They can

be used when testing any protocol which can be specified as an extended

finite state machine; the protocol need not be deterministic. The algorithms

operate by processing all observed messages in order, keeping track of the

possible states of the IUT, rather than using backtracking; hence they can

be run either on-line or off-line.

The individual algorithms differ in their assumptions about the trace.

The first algorithm, which is presented solely for purposes of illustration

and is not meant to be used in practice, requires that messages actually be

observed within the SUT, at the lower service boundary of the IUT. Since

there is no propagation delay between the IUT and the observer in this

case, the algorithm can assume that all messages are observed in the same

order as they are sent and received by the IUT. With this assumption, the

algorithm is fairly trivial.

18



The second algorithm places the observer outside the IUT. In this situ-

ation, messages may not be observed in the same order as they are sent and

received by the IUT; the algorithm must take this possibility into account.

However, the second algorithm does make the assumption that the underly-

ing communications service is reliable, and will not lose messages or deliver

them out of sequence.

Finally, the third algorithm assumes that messages may be lost by the

underlying communications service.

In general, as the assumptions are made weaker, the algorithm becomes

more complex, and its error-detecting power decreases: it becomes more

difficult to be certain that an error has occurred.

2.3.1 Model of the IUT

The IUT is modelled as an extended finite state machine. At any given

moment, the IUT has an identifiable state, which determines its possible

reactions to subsequent events. The IUT may change to a different state

when it receives a message or when an internal event occurs, such as a

timeout or a request from a higher layer, possibly sending one or more

messages of its own. In some cases, there may be more than one possible

state transition which the IUT can make; one of them will be chosen when

the event occurs. State transitions are atomic: only one occurs at a time.

A state machine may be represented as a directed graph, with the nodes of

the graph representing states and the arcs representing state transitions; the

19
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Figure 2.1: Decomposing a state transition

arcs are labelled with messages received and sent during the state transition.

The trace analyzer can only observe one message at a time. Therefore,

it is awkward to handle a state transition involving more than one message.

However, we can assume without loss of generality that each state transition

has at most one message associated with it, either sent or received: If a

single state transition has more than one message associated with it, we can

decompose it into several transitions, each having a single message associated

with it, with corresponding intermediate states. For example, suppose that

the IUT may change from state x to state y when it receives a message a,

sending message b in response. We can decompose this transition into two

transitions, as shown in Figure 2.1.

There may be state transitions which have no messages associated with

them. That is, the IUT may change state without having sent or received a

20



message. For example, such transitions might be caused by internal events

(such as timeouts or user requests). We will refer to such transitions as

invisible transitions. They are not visible to the trace analyzer, which only

observes messages.

Let Q be the set of all possible states of the IUT. Let A be the set of

messages which can be sent or received by the IUT; a message which can be

both sent and received by the IUT is represented by two different elements

of A. If qεQ is a state of the IUT, then for each aεA representing a message

which may be received by the IUT, a(q) denotes the set of possible states of

the IUT after it receives a in state q; and for each aεA representing a message

which may be sent by the IUT, a(q) denotes the set of possible states of the

IUT after it sends a in state q. a(q) typically contains a single state, but

may be empty (because event a cannot occur in state q) or contain more

than one state (because of nondeterminism). If S ⊆ Q is a set of states,

a(S) will denote the set
⋃
qεS a(q), that is, the set of all states which may be

reached from a state in S via event a.

In addition, we define c(S), the completion of a set S with respect to

invisible transitions, to be the set of all states reachable from some state

in S via zero or more invisible transitions. In particular, c(S) includes S.

Whenever it is possible for the IUT to be in some state in S, it is also

possible for it to be in a state in c(S), since the IUT may change from a

state in S to a state in c(S) without any messages being observed.
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2.3.2 Algorithm 1: observer within the SUT

We begin with a trivial algorithm, assuming that the lower service boundary

of the IUT can be observed directly (Figure 2.2). Under this assumption, all

messages are observed as they are sent and received by the IUT, with no in-

tervening delay. There is no difference between the order in which messages

are observed by the trace analyzer and the order in which they are sent and

received by the IUT. Needless to say, this assumption is completely unreal-

istic for conformance testing; the algorithm is presented only for illustrative

purposes.

Let a1, a2, . . . be the sequence of messages observed. For i = 0, 1, 2, . . .,

define Si to be the set of possible states of the IUT after it has sent or

received the messages a1, a2, . . . ai. Initially, the IUT can be in any state, so

S0 = Q.

Lemma 1. Si = c(ai(Si−1)).
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Proof. By definition.2

Algorithm. Let s := Q.

When message ai is observed, set s := c(ai(s)).

If s is now empty, the IUT fails.

Otherwise, wait for the next message and repeat.

Invariant. At any given time, s = Si, where i is the index of the last

message observed.

Proof of invariant. By induction.

Initially, s = S0; the invariant is trivially true.

Now suppose that ai−1 was the last message observed, and that s =

Si−1, by inductive hypothesis. When ai is observed, s is assigned the value

c(ai(s)) = c(ai(Si−1)) = Si, so the invariant is preserved.2

It follows that if s ever becomes empty, then Si must be empty for some

i: that is, after the IUT sends or receives the message ai, there is no valid

state which it could be in. Therefore, the IUT must be incorrect.

Essentially, this algorithm simulates a nondeterministic state machine

using a deterministic one. See Theorem 2.1 of Hopcroft and Ullman [4].

2.3.3 Algorithm 2: observer outside the SUT

The first algorithm assumes that the observer is placed inside the SUT,

which is completely unrealistic. A more realistic setup is one in which the

observer is placed outside the SUT (Figure 2.3). In this situation, however,

the order in which messages are observed may not be the same as the order
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in which they are sent and received by the IUT, as discussed in Chapter 1.

Partial ordering of messages

We define a partial ordering ≺ on the messages observed by the trace ana-

lyzer: if we know for certain that message m must have been sent or received

by the IUT before message m′, based only on the information available to

the trace analyzer, then we write m ≺ m′.

Given any two messages m and m′, there are three cases: m ≺ m′; or

m′ ≺ m; or neither, that is, it is possible that m was sent or received before

m′, but it is also possible that m′ was sent or received before m. In the

third case, we write m 6≺ m′ and m′ 6≺m.

How can we tell which case applies? Suppose that a timestamp is as-

signed to each message observed. Let t(m) be the time at which message m

is observed.
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Suppose that p and p′ are messages sent by the IUT. If t(p) < t(p′), then

we know that the IUT must have sent p before it sent p′, because the under-

lying communications service delivers messages in order (by assumption);

so p ≺ p′. Similarly, if q and q′ are messages sent to the IUT, such that

t(q) < t(q′), then the IUT must receive q before it receives q′, so q ≺ q′.

Suppose that p is sent by the IUT and q is sent to the IUT. There are

three possible cases. We know that if t(p) < t(q), then the IUT must have

sent p before it received q, because at the time p is observed, the IUT cannot

have received q yet; so p ≺ q.

Let δ be the maximum round-trip propagation delay between the ob-

server and the IUT: that is, the maximum time it takes for a message to

travel from the observer to the IUT, for the IUT to send a response, and

for the response to travel from the IUT to the observer. If t(p) > t(q) + δ,

then the IUT must have sent p after it received q, because if not, the round-

trip propagation delay would have been greater than δ, which is impossible

(Figure 2.4). So q ≺ p.

In the final case, t(q) < t(p) < t(q) + δ. In this case, p 6≺ q and q 6≺ p:

that is, we cannot tell whether q was received before p was sent, or vice

versa, even though q was observed before p.

Lemma 2 summarizes what we know about the partial ordering ≺.

Lemma 2. Let p, p′ be messages sent by the IUT, and let q, q′ be messages

sent to the IUT.

(i) If t(p) < t(p′), then p ≺ p′. If t(q) < t(q′), then q ≺ q′.
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(ii) If t(p) < t(q), then p ≺ q.

(iii) If t(p) > t(q) + δ, then q ≺ p.

(iv) If t(q) < t(p) < t(q) + δ, then p 6≺ q and q 6≺ p.

Sets of possible states

Let p1, p2, . . . be the sequence of messages sent by the IUT, in the order

observed. Let q1, q2, . . . be the sequence of messages sent to the IUT. We

have a partial ordering ≺ of these messages, as described above.

Consider a sequence of messages (m1, . . .mn), where the m1, . . . mn are

taken from the messages p1, . . . and q1, . . .. We say that this sequence is

consistent with the partial ordering ≺ if the following condition holds: if m

is in the sequence, and m′ ≺ m, then m′ is in the sequence, and m′ precedes

m in the sequence.

Since p1 ≺ p2 ≺ . . . and q1 ≺ q2 ≺ . . ., a sequence consistent with ≺

which consists of the messages p1, . . . pi and q1, . . . qj will be of the form
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(. . . pi, . . . qj) or (. . . qj, . . . pi).

We define Si,j to be the set of all states of the IUT which could result

from a sequence consistent with ≺ which consists of the messages p1, . . . pi

and q1, . . . qj. We define S0,0 to be Q, the set of all possible states.

Note that if pi+1 ≺ qj, then any sequence consistent with ≺ which con-

tains qj must also contain pi+1. Therefore, there exist no sequences con-

sistent with ≺ which contain only p1, . . . pi and q1, . . . qj, and Si,j is empty.

Similarly, if qj+1 ≺ pi, then Si,j is empty.

For example, if p1 ≺ q1, and q1 ≺ p2, S1,1 would be the set of states that

could result from the sequence (p1, q1), that is, the set c(q1(c(p1(Q)))). The

sequence (q1, p1) would not be consistent with the partial ordering.

On the other hand, if p2 ≺ q1, then S1,1 would be empty, since all

sequences consistent with the partial ordering would have to begin with

(p1, p2, . . .).

It may be helpful to consider the sets Si,j as forming a two-dimensional

array (Figure 2.5), with the messages p1, p2, . . . along the left side and

q1, q2, . . . along the top. If a square (i, j), i, j 6= 0, is non-empty, then ei-

ther the square immediately to its left or the square immediately above

it must be non-empty. To see why, observe that if (i, j) is not empty,

there must be some sequence of the form (. . . pi, . . . qj) or (. . . qj, . . . pi)

which is consistent with the partial ordering ≺. If we remove the last mes-

sage in the sequence, we obtain a sequence of the form (. . . pi, . . . qj−1) or

(. . . qj−1, . . . pi)—indicating that the square (i, j−1) is not empty—or of the
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Figure 2.5: The sets Si,j

form (. . . qj, . . . pi−1) or (. . . pi−1, . . . qj)—indicating that the square (i−1, j)

is not empty.

Also note that if qj ≺ pi, then Si,j−1—the square immediately to the left

of (i, j)—is empty, because there are no sequences of the form (. . . pi, . . . qj−1)

or (. . . qj−1, . . . pi). Similarly, if pi ≺ qj, then Si−1,j is empty.

Hopefully this discussion makes things clearer, and not more obscure.

The following lemma indicates exactly how the contents of the square (i, j)

can be calculated from those of its neighbors.

Lemma 3. (i) If t(qj) + δ < t(pi), then Si,j = c(pi(Si−1,j)).

(ii) If t(pi) < t(qj), then Si,j = c(qj(Si,j−1)).

(iii) If t(qj) < t(pi) < t(qj) + δ, then Si,j = c(pi(Si−1,j)) ∪ c(qj(Si,j−1)).

Proof. (i) By Lemma 2, we know that qj ≺ pi. So Si,j consists of the

states corresponding to sequences of the form (. . . qj , . . . pi) consistent with

≺. But each of these sequences is formed by appending pi to a subsequence
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of the form (. . . qj , . . . pi−1) or (. . . pi−1, . . . qj); and the set Si−1,j is exactly

the set of all possible states resulting from these subsequences. Therefore,

c(pi(Si−1,j)) is the set of all possible states resulting from these subsequences

followed by pi, which is the same as the set Si,j.

(ii) is analogous to (i), with the p’s and q’s exchanged.

(iii) simply combines (i) and (ii).2

In other words, the square (i, j) can be calculated directly from its

nonempty neighbors immediately above it and to its left, as indicated by

the arrows in Figure 2.5.

The algorithm

The following algorithm calculates the sets Si,j, one column at a time. It

uses three data structures: a list of sets si, corresponding to sets Si,j for a

particular value of j; a queue of messages pi observed travelling from the IUT

within the last δ time-units; and a queue of messages qj observed travelling

to the IUT within the last δ time-units. Each message is kept for time δ,

then discarded.

Algorithm. (1) When pi is observed, put it on the from-IUT queue and

set si := c(pi(si−1)) (Lemma 3(i)). After time δ, dequeue and discard pi,

and discard the set si−1.

(2) When qj is observed, put it on the to-IUT queue. After time δ,

dequeue it and calculate new sets s′i as follows. (During this step, the sets

s′i correspond to the sets Si,j; the sets si correspond to the sets Si,j−1.)
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For the i which is the index of the last message taken off the from-IUT

queue, let s′i := c(qj(si)) (Lemma 3(ii)).

For each message pi still on the from-IUT queue, we calculate a corre-

sponding set s′i: let s′i := c(pi(s
′
i−1)) ∪ c(qj(si)) (Lemma 3(iii)).

If all the sets s′i are empty, fail the IUT.

Otherwise, replace the old sets si with the new sets s′i.

Invariant. Let qj be the last message taken off the to-IUT queue. Then

if pi is the last message taken off the from-IUT queue, or if pi is still on the

from-IUT queue, si = Si,j.

Proof of invariant. (1) Suppose that the invariant holds when pi is

received. Then pi−1 is either still on the from-IUT queue (if the queue is not

empty) or the last message taken off the queue (if the queue is empty), so

si−1 = Si−1,j. Since qj has been dequeued, t(qj) + δ < t(pi), so by Lemma

3(i), Si,j = c(pi(Si−1,j)), or si = c(pi(si−1)). Thus the invariant is preserved.

The invariant is clearly preserved when pi is dequeued.

(2) Suppose that the invariant holds when qj is dequeued, that is, si =

Si,j−1 for all i such that pi is the last message taken off the from-IUT queue,

or is still on the from-IUT queue. We show that s′i = Si,j for all such i, by

induction.

If pi is the last message taken off the from-IUT queue, then si = Si,j−1.

pi was dequeued before qj was, so t(pi) < t(qj). By Lemma 3(ii), Si,j =

c(qj(Si,j−1)) = c(qj(si)), and s′i = Si,j.

If pi is still on the queue, then (by our inductive hypothesis) s′i−1 =
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Figure 2.6: Unobserved messages at initialization

Si−1,j. Since pi has not been dequeued yet, while qj has, t(qj) < t(pi);

and since pi was observed before qj was dequeued, t(pi) < t(qj) + δ. By

Lemma 3(iii), Si,j = c(pi(Si−1,j))∪ c(qj(Si,j−1)) = c(pi(s
′
i−1))∪ c(qj(si)). So

s′i = Si,j, and the invariant is preserved.2

Initialization of the algorithm

When the trace analysis algorithm is first started, there may already be

messages travelling from the IUT to the observer, and vice versa (Figure

2.6). As described above, the algorithm will not be able to handle this

situation properly, since it assumes that the observer sees all messages sent

to the IUT.

Let c̃(S) denote the completion of a set S with respect to invisible events

and messages received by the IUT: that is, the set of all states reachable

from a state in S via invisible transitions and messages received by the IUT.

If we know that the set of possible states of the IUT includes a set S, and if
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the IUT may receive messages which are not seen by the observer, then the

set of possible states of the IUT must also include the set c̃(S). Any of the

states in c̃(S) can be reached from a state in S without any messages being

seen by the observer.

Suppose that, before the algorithm has been running for time δ, a mes-

sage p sent by the IUT is observed (Figure 2.6). Then there may be messages

travelling from the observer to the IUT, not seen by the observer, which are

received by the IUT after it sends p. Therefore, until time δ, the trace anal-

ysis algorithm should take the completion of all state sets with respect to

both invisible transitions and messages received by the IUT: in other words,

substitute c̃ for c in step (1) above. After time δ, the algorithm operates

normally (using c instead of c̃).

2.3.4 Algorithm 3: lost messages

The second algorithm assumes that the communications service used to

send messages between the observer and the IUT is reliable, delivering all

messages correctly. This assumption may not always be true. For example,

when testing a data-link protocol, we cannot always assume that the physical

layer is reliable.

We now modify the second algorithm to determine whether the observed

sequence of messages could have been produced by a correct implementation,

taking the possibility of messages being lost between the observer and the

IUT into consideration. We will still assume, however, that messages are
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delivered in order, if they are delivered at all.

Messages sent by the IUT may be lost before they reach the observer.

Let ĉ(S) denote the completion of S with respect to invisible transitions and

messages sent by the IUT: that is, the set of states reachable from a state in

S via invisible transitions and transitions in which the IUT sends a message.

It is analogous to c(S) and c̃(S). If we know that the set of possible states

of the IUT includes a set S, and if the IUT may send messages which are

not seen by the observer, then the set of possible states of the IUT must

also include the set ĉ(S).

Let p1, p2, . . . and q1, q2, . . . be the messages observed. Note that some

messages sent by the IUT may be lost before reaching the observer, and

hence will not appear in the sequence p1, p2, . . .; similarly, some messages in

the sequence q1, q2, . . . will be lost before they reach the IUT.

We now define Si,j to be the set of all states of the IUT which could result

from a sequence of events, consistent with the partial ordering ≺, which con-

tains the messages p1, p2, . . . pi and possibly additional messages sent by the

IUT, and does not contain any of the messages pi+1, pi+2, . . . , qj+1, qj+2, . . ..

(This is similar to the previous definition of Si,j, except that any of the

messages sent to the IUT may be lost, and some of the messages sent by the

IUT may not reach the observer.) We obtain a modified Lemma 3:

Lemma 3′. (i) If t(qj) + δ < t(pi), then Si,j = ĉ(pi(Si−1,j)).

(ii) If t(pi) < t(qj), Si,j = ĉ(qj(Si,j−1)) ∪ Si,j−1.

(iii) If t(qj) < t(pi) < t(qj) + δ, then Si,j = ĉ(pi(Si−1,j))∪ ĉ(qj(Si,j−1))∪
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Si,j−1.

The proof is similar to the proof of Lemma 3. In cases (ii) and (iii), we

must take into consideration the possibility that qj may not be received at

all. Messages sent by the IUT which do not reach the observer are taken

care of by the ĉ operator.

The algorithm is modified accordingly.

Algorithm. (1) When pi is observed, set si := ĉ(pi(si−1)) and enqueue

pi. After time δ, dequeue and discard pi, and discard the set si−1.

(2) When qj is observed, enqueue it immediately. After time δ, dequeue

it and update the sets si as follows.

If pi is the last message taken off the from-IUT queue, set s′i := ĉ(qj(si))∪

si.

If pi is still on the from-IUT queue, set s′i := ĉ(pi(s
′
i−1)) ∪ ĉ(qj(si)) ∪ si.

If all the s′i are empty, fail the IUT.

Otherwise, replace the sets si with the newly defined sets s′i.2

Initialization of the modified algorithm is somewhat simpler. From the

time the algorithm is started until time δ has passed, messages may be both

sent and received by the IUT without being observed by the trace analyzer;

therefore, if the set of possible states is not empty, it must contain all possible

states. (We assume that all states of the IUT are reachable.) Accordingly,

we substitute c̄ for ĉ in step (1) of the algorithm until time δ has passed,

where c̄(S) is defined to be Q (the set of all possible states of the IUT) if S

is not empty, or the empty set if S is empty.
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2.3.5 Other variations

We have presented three trace analysis algorithms, each of which makes

certain assumptions about how messages are observed. In general, there is

a tradeoff between our assumptions and the errors which we can detect: if

our assumptions are weaker, it becomes more difficult to be certain that the

IUT has made an error.

Other variations are possible. For example, we can devise an algorithm

which assumes that messages may be damaged, but are never lost. These

assumptions are weaker than those of the second algorithm (messages can

never be damaged), but stronger than those of the third algorithm (mes-

sages can be lost). We can also imagine trace analysis algorithms whose

assumptions are even weaker than those presented here: for example, an

algorithm which assumes that messages can be damaged, lost, or delivered

out of order.
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Chapter 3

A LAPB trace analyzer

Having discussed why trace analysis should be used in conformance testing,

and given specific algorithms for doing so, we now demonstrate the feasibility

of the proposed methodology by applying it to a specific protocol, the X.25

LAPB protocol as specified by ISO 7776 [5]. This chapter describes the

design and implementation of a trace analyzer for the LAPB protocol; the

following chapter discusses the effects of re-specifying the standard TTCN

test suite according to the proposed methodology. Both the source code

for the trace analyzer and the re-specified test suite are included in the

Appendix.

3.1 Functionality

The LAPB trace analyzer implements all three trace analysis algorithms

presented in the previous chapter; the user selects the appropriate one. The
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protocol specification which is used to analyze the trace is described in

detail in Appendix A. Basically, it is derived from ISO 7776 by splitting

receive/send transitions into two separate transitions with an intermediate

state, and modelling timeouts as spontaneous events. The data transfer

specification is also somewhat simplified.

The trace analyzer runs under the Unix operating system, on a Sun 3

workstation. It operates off-line, reading a recorded trace and checking it

for errors. Detailed directions for its use are given in Appendix B.

3.2 Design and implementation

The trace analyzer is decomposed into modules according to Parnas’ crite-

rion of information hiding [14]. Each module hides a design decision from

the rest of the system. In particular, all knowledge of the protocol being

analyzed is confined to one module. This makes it possible to modify the

protocol specification, or even to change the trace analyzer to handle a dif-

ferent protocol, by changing a single module. Similarly, the decision to do

the trace analysis off-line instead of on-line is hidden within one module.

The trace analyzer consists of four modules. The Buffers module pro-

vides facilities for handling octet buffers of arbitrary length, used to store

observed messages. The Events module hides the decision to do trace anal-

ysis off-line; the Protocol module hides the protocol specification. Finally,

the main module implements the actual trace analysis algorithms.
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The implementation of the trace analyzer was straightforward: it com-

prises about 2000 lines of C code. Appendix C provides brief descriptions

of the module interfaces and the modules themselves.

3.3 Operation

Some examples of the trace analyzer in operation are given here. The traces

being analyzed were obtained from an IDACOM PT. The PT is an X.25

protocol tester which can be used to do both monitoring and emulation. It

has fairly sophisticated facilities for capturing and displaying protocol traces

in various formats. In addition, user-written test scripts can be used to

control the X.25 emulation (for example, to make it send an invalid message).

These test scripts can be used to implement test cases.

The PT actually has two CPUs, operating independently of one another,

each of which can be used to do monitoring or emulation. The traces shown

here were obtained by running two X.25 emulations against one another,

one on each CPU. CPU1 acts as the DCE, and CPU2 acts as the DTE; the

trace analyzer checks the behavior of the DTE only. The traces are recorded

at the DCE; the round-trip propagation delay between the DTE and DCE is

about 35 milliseconds. In the examples shown here, 50 milliseconds is used

for the parameter δ.

In the first trace, the DCE and the DTE send DISC commands at the

same time (DISC collision). The DCE then initiates link setup. Finally, the
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Figure 3.1: Sequence of events in trace 1

DCE requests link reset by sending an FRMR response, and the DTE resets

the link. See Figure 3.1.

Analyzing it using the second algorithm of Chapter 2 (propagation delay,

messages not lost), no errors are found:

Trace analysis begins

delta = 0.050000

DTE value of k is 7

DTE value of N1 is 1080, DCE value of N1 is 1080
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12.572500 rx A / U / DISC / P/F = 1 /

12.576700 tx B / U / DISC / P/F = 1 /

12.613500 tx A / U / UA / P/F = 1 /

12.634500 rx B / U / UA / P/F = 1 /

31.957100 rx A / U / SABM / P/F = 1 /

31.964100 tx A / U / UA / P/F = 1 /

33.858600 rx B / U / FRMR / P/F = 1 / 731000

33.866700 tx B / U / SABM / P/F = 1 /

33.922900 rx B / U / UA / P/F = 1 /

Trace analysis ends, no error discovered

The output of the trace analyzer is fairly primitive: it simply echoes each

frame as it is decoded and processed. The time at which the frame is ob-

served is shown in the first column; it is given in seconds. The “rx” or “tx”

in the second column indicates whether the frame was received or sent by

the IUT. The remaining fields correspond to fields of the frame: address,

type (I, S, or U), and so forth.

Note that in the trace, the DTE appears to send its DISC command

after receiving the DISC command from the DCE, when in fact it sent its

DISC before receiving the DCE’s DISC. The second algorithm handles this

situation correctly.

The second trace shows data transfer: the DCE and DTE exchange I

frames. See Figure 3.2.

Again, analyzing the trace using the second algorithm, no errors are

found:

Trace analysis begins

delta = 0.050000
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Figure 3.2: Sequence of events in trace 2
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DTE value of k is 7

DTE value of N1 is 1080, DCE value of N1 is 1080

42.945000 rx A / I / N(S) = 2 / P = 0 / N(R) = 2 / 1001002049

4441434F4D20454C454354524F4E494353204C544420204252494E4753202

0544F2020594F552020544845202020502054202121212020202020202020

202020544845202050524F544F434F4C20202054455354455220205448415

420204C454144532020544845202057415920494E544F2054484520465554

55524520

42.970400 tx A / S / RR / P/F = 0 / N(R) = 3 /

42.980200 tx B / I / N(S) = 2 / P = 0 / N(R) = 3 / 100121

43.101900 rx B / S / RR / P/F = 0 / N(R) = 3 /

43.592000 rx A / I / N(S) = 3 / P = 0 / N(R) = 3 / 1001022049

4441434F4D20454C454354524F4E494353204C544420204252494E4753202

0544F2020594F552020544845202020502054202121212020202020202020

202020544845202050524F544F434F4C20202054455354455220205448415

420204C454144532020544845202057415920494E544F2054484520465554

55524520

43.617700 tx A / S / RR / P/F = 0 / N(R) = 4 /

43.627500 tx B / I / N(S) = 3 / P = 0 / N(R) = 4 / 100141

43.748300 rx B / S / RR / P/F = 0 / N(R) = 4 /

Trace analysis ends, no error discovered

In the third trace, the DCE sends a SABM to the DTE, but the DTE does

not send a UA in response; instead, it immediately sends an I frame (a restart

request packet). Eventually both sides time out—the DCE retransmits its

SABM, the DTE sends a polling RR command—and the link is set up. See

Figure 3.3.

This trace could be caused by one of two things. The first possibility is

that the IUT is invalid: the first time it received the SABM, it did not send

a UA before entering information transfer state. The second possibility is

that the IUT is valid, and sent the UA correctly, but because the underlying
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RR/NR=1

RR/NR=1

I/NS=0

I/NS=0

UA

RR/P=1SABM

(timeout)(timeout)

I/NS=0

SABM

DTEDCE

Figure 3.3: Sequence of events in trace 3
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physical service is unreliable, the UA was lost between the IUT and the

observer.

If we apply the second algorithm to this trace, it tells us that the IUT’s

behavior is invalid, because it assumes that messages are never lost.

Trace analysis begins

delta = 0.050000

DTE value of k is 7

DTE value of N1 is 1080, DCE value of N1 is 1080

21.456000 rx A / U / SABM / P/F = 1 /

21.465800 tx B / I / N(S) = 1 / P = 0 / N(R) = 1 / 1000FB0000

24.345600 tx B / S / RR / P/F = 1 / N(R) = 1 /

Error detected in trace at time 24.395600

If we apply the third algorithm, however, it tells us that the IUT is valid.

Trace analysis begins

delta = 0.050000

messages may be lost between the observer and the IUT

DTE value of k is 7

DTE value of N1 is 1080, DCE value of N1 is 1080

21.456000 rx A / U / SABM / P/F = 1 /

21.465800 tx B / I / N(S) = 1 / P = 0 / N(R) = 1 / 1000FB0000

24.345600 tx B / S / RR / P/F = 1 / N(R) = 1 /

24.465600 rx A / U / SABM / P/F = 1 /

24.474500 tx A / U / UA / P/F = 1 /

24.571000 tx B / I / N(S) = 0 / P = 0 / N(R) = 0 / 1000FB0000

24.587200 rx B / S / RR / P/F = 0 / N(R) = 1 /

24.665600 rx A / I / N(S) = 0 / P = 0 / N(R) = 1 / 1000FF

24.677800 tx A / S / RR / P/F = 0 / N(R) = 1 /

Trace analysis ends, no error discovered
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Which algorithm is to be considered correct? It depends on whether

the underlying physical service is, in fact, reliable or not. If the service

is unreliable, and was responsible for the UA being lost, then the third

algorithm is correct; the second algorithm is, in effect, blaming the IUT for

a fault of the underlying physical service.

On the other hand, if the service is reliable, and it was the IUT that failed

to send the UA, then the second algorithm is correct; the third algorithm

fails to detect the error because it cannot be sure that the IUT did not send

the UA.
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Chapter 4

A LAPB test suite

To illustrate the advantages of the proposed methodology, we have rewritten

the standard TTCN test suite for LAPB, given in ISO 8882-2, to specify only

the expected behavior of the IUT in each test case. The resulting test suite,

given in Appendix D, is only 8 pages long, compared to 252 in the original.

This chapter first describes the original test suite, and discusses some of

the problems with it. The re-specified test suite is then discussed.

4.1 The original test suite

ISO 8882 [7] describes the standard conformance testing procedures for X.25

DTEs. It is divided into three parts, which are progressing towards stan-

dardization separately: ISO 8882-1 gives an overview, ISO 8882-2 specifies

the data-link layer (LAPB) test suite, and ISO 8882-3 specifies the packet

layer test suite. We will be referring to the November 1989 version of ISO
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8882-2, JTC 1/SC 6/N 5503.

ISO 8882-2 tests the data-link layer of DTEs which are supposed to con-

form to CCITT X.25 1980, CCITT X.25 1984, or ISO 7776. (The require-

ments of these three standards are slightly different.) The test suite assumes

basic sequence numbering, single link operation, DTE/DCE operation, and

octet alignment.

The 287 test cases making up the test suite are divided into eight groups.

There is one test group for each of seven states: disconnected phase (DL1),

link disconnection (DL2), link setup (DL3), information transfer phase (DL4),

frame reject condition (DL5), DTE busy condition (DL6), and sent REJ

condition (DL7). Each of these seven test groups is divided into three sub-

groups, testing the IUT’s responses to proper, improper, and inopportune

frames, respectively. The eighth group, DL8, verifies that the IUT handles

timeouts correctly.

All test cases are specified in TTCN; the remote test method is used. A

typical test case consists of a preamble to put the IUT in the appropriate

state, a frame sent by the tester to the IUT, an expected response from

the IUT, and a postamble to verify that the IUT is in the correct state.

There may be more than one possible response, and therefore more than

one postamble used. Some test cases, particularly in the data transfer states

DL4, DL6, and DL7, use attached subtrees to handle unexpected but valid

events (such as unexpected I or RR frames from the IUT).

ISO 8882-2 gives possible preambles and postambles for each of the seven
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states, but indicates that they are only intended as examples. Other pream-

bles and postambles may be used by agreement between the test laboratory

and the client.

4.2 Problems with the original test suite

The ISO 8882-2 test suite has a number of major problems. We can group

them into five areas.

First, the test suite standard itself is extraordinarily large. ISO 7776,

the protocol standard from which the test suite is derived, is 23 pages long;

ISO 8882-2 is 252 pages long, an entire order of magnitude larger. LAPB

is a relatively simple protocol; one wonders how long a test suite for the

transport or session layer protocols would be. It is very difficult to read

and understand a document of this size, to detect errors in it, and to make

changes to it.

Second, the test suite makes some questionable assumptions. It is stated

that “DISC and SABM commands and DM responses sent by the IUT are

not considered to be acceptable unexpected frames during information trans-

fer tests”; but no real justification is given for this statement. Moreover,

the assumption that the IUT will not send DISC, SABM or DM frames is

not limited to the information transfer tests; for example, the test cases in

group DL1 make this assumption as well. This assumption does not seem

justifiable: there certainly exist DTEs which send DISC, SABM, and DM
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frames spontaneously. This behavior is permitted by the original protocol

standards, but will cause the DTE to fail the standard conformance tests.

It is also assumed that frames are never lost by the underlying physical

layer; this assumption is not stated explicitly by ISO 8882-2. This assump-

tion may be justifiable, provided the physical connection between the tester

and the IUT is reliable enough. However, if the physical connection does

happen to lose a frame, the IUT will probably fail the current test case,

through no fault of its own.

These assumptions simplify the test cases, by reducing the number of

unexpected but valid events. Changing the test suite to do without these

assumptions would make it even larger than it is already.

A third problem is that those unexpected but valid events which are

handled—namely I, RR, RNR, and REJ frames during information transfer

tests—are handled in a rather clumsy and limited way. For example, the

NORMAL INFORMATION TRANSFER test step, which is used by many

test cases, checks that the N(S) field in I frames sent by the IUT is correct,

but only checks that the N(R) field acknowledges either all I frames sent by

the tester, or all I frames but one. If the tester hasn’t sent any I frames

at all, and the IUT happens to send an I frame with N(R)=7—which is

invalid—the tester will accept it. The N(R) field in RR, RNR, and REJ

frames is not checked at all.

Fourth, the current version of ISO 8882-2 contains many, many errors,

despite repeated revisions over several years by protocol experts. There are
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numerous errors in TTCN usage. In some test cases, for example DL2 110,

the test suite does not indicate what the tester should do if a boolean con-

dition does not hold. In test cases which attach the test steps ACCEPT-

ABLE UNEXPECTED DL4, DL6, and DL7, there is no GOTO back to

the top of the list of alternatives.

Several test cases in DL4 do not handle unexpected but valid I-frames

or supervisory frames.

As already mentioned, unexpected but valid SABM, DISC, and DM

frames are not handled. If the IUT sends one of these frames, it will fail.

Several cases, for example DL4 105, will only accept RR or RNR re-

sponses, not commands.

The test step LINK SET UP is attached inappropriately in a number

of cases, for example DL4 201: if the timer elapses without a frame being

received from the IUT, the verdict PASS will be assigned, instead of FAIL.

We have found many other errors in various test cases; and undoubtedly

there are many which we haven’t found.

And finally, as a whole the test suite seems remarkably disorganized.

The numbering and ordering of the test cases is strange. For example,

in test group DL1, there are test cases 201A, 201B, 202 to 205 (but not

206), 207 to 211, 215 and 216. What happened to the missing test cases?

There seems to be no discernible reason for the ordering of test cases.

There are several test cases which have two test case references (for ex-

ample, DL2 111); this is never explained. There seems to be unneces-
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sary repetition in the test suite: in DL3, for example, the IUT reaction

to RR, RNR, REJ frames with P=0, P=1, F=0, F=1—namely, discard—is

tested; 12 test cases in all. Finally, in the test step library, there are some

instances where two quite different test steps have the same stated test

purpose; for example, NORMAL INFORMATION TRANSFER and AC-

CEPTABLE UNEXPECTED DL4. This disorganization contributes to the

difficulty of reading and understanding the test suite.

In short, the ISO 8882-2 test suite has a number of major problems,

which do not appear likely to be solved in the near future.

4.3 The re-specified test suite

In order to demonstrate the advantages of the proposed methodology, we

have re-specified the ISO 8882-2 test suite, having each test case only specify

the expected IUT behavior; any unexpected behavior will be checked for

validity by the trace analyzer.

Most test cases in the test suite consist of one stimulus sent to the IUT

and a set of possible responses from the IUT, and can be specified on one line.

The test suite has been changed slightly to test ISO 7776 DTEs exclusively,

not CCITT X.25 1980 or 1984 DTEs, but the differences between the three

standard are minor and affect only a few test cases. The same test suite

structure and same test case numbering is used; inconsistencies with the

protocol standards are not corrected. No variables are used: in the data

51



transfer tests, sequence numbers are specified explicitly, assuming that the

DL4, DL6, and DL7 preambles ensure the IUT’s V(S) and V(R) variables

are set to 0. Preambles and postambles are not given; procedures which

are mutually agreeable between the test laboratory and the client should be

used.

The complete test suite is included in Appendix D. It consists of only

8 pages, compared to 252 in the original. In our opinion, it has a number

of major advantages over the original. Because the test cases are so much

simpler, and because the test suite is so much smaller, the test suite is much

easier to read and understand; inconsistencies with the protocol standard

become more visible; and changes may be made quickly. The overall reliabil-

ity and usefulness of the LAPB conformance testing procedure are thereby

enhanced.

4.4 Implementing the test cases

Implementing the test cases is straightforward. The typical test case im-

plementation first executes a preamble to put the IUT in the appropriate

state, then sends the specified stimulus to the IUT, and starts a timer (the

timer’s period is another matter for agreement between the test laboratory

and the client). If the expected response is received before the timer expires,

a postamble is executed to check that the IUT is in the correct state. If some

unexpected message is received, or the timer expires, the test is aborted. In
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the data transfer test cases, unexpected information and supervisory frames

may be received from the IUT without affecting the test results; these frames

are simply discarded. The trace analyzer will check their validity.

Assigning a verdict is simple enough. If the trace is invalid (determined

by the trace analyzer), the IUT fails. If the trace is valid, and the expected

behavior is observed, the IUT passes. If the trace is valid, but the expected

behavior was not observed, the verdict is inconclusive.

We have implemented a couple of representative test cases, DL1 101 and

DL4 108, on the IDACOM PT. Some traces from execution of the test cases

are shown below. For each test case, three traces are shown, corresponding

to (a) the expected IUT behavior, (b) invalid IUT behavior, and (c) unex-

pected but valid IUT behavior. Note that the test cases are not expected

to distinguish between (b) or (c); the trace analyzer does this.

4.4.1 Test case DL1 101

DL1 101 verifies that the IUT sends a DM with F=1 in response to a DISC

command with P=1 received in the disconnected state. In the re-specified

test suite, DL1 101 can be specified on a single line (the message sent by

the tester is shown on the left, the IUT’s response on the right):

DISC/P=1 DM/F=1

The specific preambles and postambles used to ensure that the IUT is

in a particular state or to verify that the IUT is in a particular state are left

53



up to the test case implementor. In this case, we send a DISC and wait for

a DM or UA as a preamble; we send an RR command with P=1 and wait

for a DM with F=1 as a postamble.

The following trace, in a format produced by the IDACOM PT, shows

the expected IUT behavior. Frames marked “DCE” indicate frames sent by

the tester (on CPU1); frames marked “DTE” indicate frames sent by the

IUT (the emulation on CPU2).

DL1_101: preamble

09:54.5087 DCE ADDRESS=03 FRAME=DISC P=1

09:54.5090

09:54.5161 DTE ADDRESS=03 FRAME=DM F=1

09:54.5164

DL1_101: test body

09:54.6899 DCE ADDRESS=03 FRAME=DISC P=1

09:54.6902

09:54.6969 DTE ADDRESS=03 FRAME=DM F=1

09:54.6972

DL1_101: postamble

09:54.7170 DCE ADDRESS=03 FRAME=RR P=1 NR=0

09:54.7174

09:54.7242 DTE ADDRESS=03 FRAME=DM F=1

09:54.7245

DL1_101: expected behavior observed, test ends

The next trace shows invalid IUT behavior. In the test body, the IUT

sends a UA in response to the tester’s DISC command, instead of a DM.

DL1_101: preamble

11:52.8495 DCE ADDRESS=03 FRAME=DISC P=1

11:52.8498

11:53.3393 DTE ADDRESS=03 FRAME=DM F=1

11:53.3396

DL1_101: test body
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11:53.3610 DCE ADDRESS=03 FRAME=DISC P=1

11:53.3614

11:54.0791 DTE ADDRESS=03 FRAME=UA F=1

11:54.0794

DL1_101: unexpected event, test aborted

The last trace shows valid but unexpected behavior: the IUT sends a

DM response with F=0, when the tester is expecting a DM response with

F=1. This is valid, because the IUT could have sent the DM with F=0 (to

request link setup) before receiving the tester’s DISC command; but it is

not what is expected by the test case.

DL1_101: preamble

14:58.6835 DCE ADDRESS=03 FRAME=DISC P=1

14:58.6839

14:59.7426 DTE ADDRESS=03 FRAME=DM F=1

14:59.7429

DL1_101: test body

14:59.7644 DCE ADDRESS=03 FRAME=DISC P=1

14:59.7648

15:00.5867 DTE ADDRESS=03 FRAME=DM F=0

15:00.5870

DL1_101: unexpected event, test aborted

4.4.2 Test case DL4 108

DL4 108 verifies that the IUT handles a REJ command with P=1 correctly,

by sending an RR response with F=1 and then retransmitting the requested

I frames.

I/P=0, NS=0, NR=0 ->

<- I/NS=0

I/P=0, NS=1, NR=0 ->
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<- I/NS=1

I/P=0, NS=2, NR=0 ->

<- I/NS=2

REJ/P=1, NR=1 ->

<- RR/F=1, NR=3

<- I/NS=1, NR=3

RR/NR=2, F=received P bit ->

<- I/NS=2, NR=3

RR/NR=3, F=received P bit ->

As this is a data transfer test case, any unexpected information or super-

visory frames are simply discarded; they will be checked for validity by the

trace analyzer.

As a preamble, the tester sends a DISC and waits for a UA or DM, then

sends a SABM and waits for a UA. As a postamble, the tester sends an

FRMR and waits for a SABM or DM.

The following trace shows the expected IUT behavior:

DL4_108: preamble

26:48.5894 DCE ADDRESS=03 FRAME=DISC P=1

26:48.5898

26:48.5984 DTE ADDRESS=03 FRAME=UA F=1

26:48.5897

26:48.7674 DCE ADDRESS=03 FRAME=SABM P=1

26:48.7677

26:48.7760 DTE ADDRESS=03 FRAME=UA F=1

26:48.7763

DL4_108: test body

26:48.7986 DCE ADDRESS=03 FRAME=INFO P=0 NR=0 NS=0

GF=1 D=0 Q=0 LCN=0 RESTART INDICATION PACKET

CAUSE = 00 UNDEFINED

DIAGNOSTIC = 00 NO ADDITIONAL INFORMATION

26:48.7996

26:48.8146 DTE ADDRESS=03 FRAME=RR F=0 NR=1
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26:48.8149

26:48.8913 DTE ADDRESS=01 FRAME=INFO P=0 NR=1 NS=0

GF=1 D=0 Q=0 LCN=0 RESTART CONFIRM PACKET

26:48.8920

26:48.9116 DCE ADDRESS=03 FRAME=INFO P=0 NR=0 NS=1

GF=1 D=0 Q=0 LCN=0 RESTART INDICATION PACKET

CAUSE = 00 UNDEFINED

DIAGNOSTIC = 00 NO ADDITIONAL INFORMATION

26:48.9126

26:48.9262 DTE ADDRESS=03 FRAME=RR F=0 NR=3

26:48.9265

26:49.0028 DTE ADDRESS=01 FRAME=INFO P=0 NR=2 NS=1

GF=1 D=0 Q=0 LCN=0 RESTART CONFIRM PACKET

26:49.0035

26:49.0231 DCE ADDRESS=03 FRAME=INFO P=0 NR=0 NS=2

GF=1 D=0 Q=0 LCN=0 RESTART INDICATION PACKET

CAUSE = 00 UNDEFINED

DIAGNOSTIC = 00 NO ADDITIONAL INFORMATION

26:49.0241

26:49.0377 DTE ADDRESS=03 FRAME=RR F=0 NR=3

26:49.0380

26:49.1145 DTE ADDRESS=01 FRAME=INFO P=0 NR=3 NS=2

GF=1 D=0 Q=0 LCN=0 RESTART CONFIRM PACKET

26:49.1152

26:49.1341 DCE ADDRESS=03 FRAME=REJ P=1 NR=1

26:49.1345

26:49.1433 DTE ADDRESS=03 FRAME=RR F=1 NR=3

26:49.1436

26:49.1530 DTE ADDRESS=01 FRAME=INFO P=0 NR=3 NS=1

GF=1 D=0 Q=0 LCN=0 RESTART CONFIRM PACKET

26:49.1537

26:49.1775 DCE ADDRESS=01 FRAME=RR F=0 NR=2

26:49.1779

26:49.1652 DTE ADDRESS=01 FRAME=INFO P=0 NR=3 NS=2

GF=1 D=0 Q=0 LCN=0 RESTART CONFIRM PACKET

26:49.1658

26:49.2024 DCE ADDRESS=01 FRAME=RR F=0 NR=3

26:49.2028

DL4_108: postamble
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26:49.2161 DCE ADDRESS=01 FRAME=FRMR F=0

CONTROL = 64 COMMAND VR=3 VS=3 W=0 X=0 Y=0 Z=0

BITS 17-24 INVALID COMBINATION

26:49.2169

26:49.2284 DTE ADDRESS=01 FRAME=SABM P=1

26:49.2287

26:49.2371 DCE ADDRESS=01 FRAME=UA F=1

26:49.2375

DL4_108: expected behavior observed, test ends

The following trace shows invalid IUT behavior. When the tester sends

the polling REJ command to the IUT, it retransmits the requested I frames

immediately, instead of sending an RR response.

DL4_108: preamble

40:07.6454 DCE ADDRESS=03 FRAME=DISC P=1

40:07.6458

40:08.0611 DTE ADDRESS=03 FRAME=UA F=1

40:08.0614

40:08.0772 DCE ADDRESS=03 FRAME=SABM P=1

40:08.0776

40:09.0393 DTE ADDRESS=03 FRAME=UA F=1

40:09.0395

DL4_108: test body

40:09.0618 DCE ADDRESS=03 FRAME=INFO P=0 NR=0 NS=0

GF=1 D=0 Q=0 LCN=0 RESTART INDICATION PACKET

CAUSE = 00 UNDEFINED

DIAGNOSTIC = 00 NO ADDITIONAL INFORMATION

40:09.0628

40:11.7576 DTE ADDRESS=03 FRAME=RR F=0 NR=1

40:11.7579

40:11.7862 DTE ADDRESS=01 FRAME=INFO P=0 NR=1 NS=0

GF=1 D=0 Q=0 LCN=0 RESTART CONFIRM PACKET

40:11.7869

40:11.8065 DCE ADDRESS=03 FRAME=INFO P=0 NR=0 NS=1

GF=1 D=0 Q=0 LCN=0 RESTART INDICATION PACKET

CAUSE = 00 UNDEFINED
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DIAGNOSTIC = 00 NO ADDITIONAL INFORMATION

40:11.8075

40:13.4801 DTE ADDRESS=03 FRAME=RR F=0 NR=3

40:13.4803

40:13.5087 DTE ADDRESS=01 FRAME=INFO P=0 NR=2 NS=1

GF=1 D=0 Q=0 LCN=0 RESTART CONFIRM PACKET

40:13.5094

40:13.5291 DCE ADDRESS=03 FRAME=INFO P=0 NR=0 NS=2

GF=1 D=0 Q=0 LCN=0 RESTART INDICATION PACKET

CAUSE = 00 UNDEFINED

DIAGNOSTIC = 00 NO ADDITIONAL INFORMATION

40:13.5301

40:14.8955 DTE ADDRESS=03 FRAME=RR F=0 NR=3

40:14.8958

40:14.9241 DTE ADDRESS=01 FRAME=INFO P=0 NR=3 NS=2

GF=1 D=0 Q=0 LCN=0 RESTART CONFIRM PACKET

40:14.9248

40:14.9438 DCE ADDRESS=03 FRAME=REJ P=1 NR=1

40:14.9442

40:16.4951 DTE ADDRESS=01 FRAME=INFO P=0 NR=3 NS=1

GF=1 D=0 Q=0 LCN=0 RESTART CONFIRM PACKET

40:16.4957

40:16.5263 DTE ADDRESS=01 FRAME=INFO P=0 NR=3 NS=2

GF=1 D=0 Q=0 LCN=0 RESTART CONFIRM PACKET

40:16.5270

DL4_108: unexpected event, test aborted

The final trace shows an unexpected but valid sequence of events: when

the tester sends an I frame to the IUT, the IUT acknowledges it, but does

not send an I frame of its own. This is perfectly valid, but does not allow

the test case to be performed. Eventually the tester times out and aborts

the test.

DL4_108: preamble

41:21.8252 DCE ADDRESS=03 FRAME=DISC P=1

41:21.8255
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41:23.8857 DTE ADDRESS=03 FRAME=UA F=1

41:23.8859

41:23.9017 DCE ADDRESS=03 FRAME=SABM P=1

41:23.9021

41:24.6081 DTE ADDRESS=03 FRAME=UA F=1

41:24.6084

DL4_108: test body

41:24.6306 DCE ADDRESS=03 FRAME=INFO P=0 NR=0 NS=0

GF=1 D=0 Q=0 LCN=0 RESTART INDICATION PACKET

CAUSE = 00 UNDEFINED

DIAGNOSTIC = 00 NO ADDITIONAL INFORMATION

41:24.6316

41:27.6161 DTE ADDRESS=03 FRAME=RR F=0 NR=1

41:27.6164

DL4_108: unexpected event, test aborted
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Chapter 5

Conclusions

We have shown that the problems associated with existing TTCN test

suites—excessive size and complexity, leading to large numbers of errors—

may be attributed to the conventional conformance testing methodology, in

which each test case must specify all possible valid sequences of events.

We propose a new methodology, in which an independent trace analyzer

is used to decide whether or not the observed behavior of the IUT is valid.

In this methodology, test cases only need to specify the expected sequence of

events, since unexpected events will be checked by the trace analyzer. This

simplifies the test cases dramatically. The resulting test suites are vastly

smaller and simpler than the existing ones, making it much easier to detect

and correct errors in them, and allowing us to place more confidence in the

results which they produce. We believe that adopting the proposed method-

ology will greatly enhance the reliability and usefulness of OSI conformance
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testing.

In order to use the new methodology, trace analyzers are needed. Exist-

ing trace analysis methods turn out to be unsuitable for conformance testing.

Three new trace analysis algorithms have been presented and proved.

Finally, the methodology has been applied successfully to the LAPB

protocol. A LAPB trace analyzer has been designed and implemented, and

the standard TTCN test suite for LAPB has been re-specified, reducing its

size from 252 pages to 10 pages.

A number of areas have not been addressed in this thesis, but appear to

be worthwhile to investigate in the future.

1. Other trace analysis algorithms. The algorithms presented here as-

sume that the protocol being tested can be modelled by an extended

finite state machine, and do not handle timeouts very cleanly. If the

proposed methodology does become widely used, more sophisticated

trace analysis algorithms—perhaps employing multiple passes—would

be useful.

2. Testing of higher layers, and of more complex protocols. LAPB is a

data-link protocol, and is rather simple compared to the ISO transport

or session protocols.

3. Performance. In this thesis, performance was not considered an im-

portant factor. The LAPB trace analyzer discussed in Chapter 3 was

not intended for on-line use, and in fact is probably too slow.
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